
Mathematical background and revision

A.1 Vector spaces

Vectors and operators in finite spaces

Vectors in a vector space are members of a set for which addition and scalar multiplication
both yield new members of the set. The familiar displacement and velocity vectors in real 3-D
space are only some examples of vectors, and many more abstract instances occur in physics. In
particular, the state of a quantum system is a vector in an infinite-dimensional vector space, and
the possibility of superposition, which is one of the main ways in which classical and quantum
descriptions of objects differ, follows. We denote vectors as | · · · 〉, eg |v〉, |3〉, |ψ〉, |+〉, |♥〉,
where the text between the “|” and the “〉” is just a name or label for the ket, which can take
many forms. The dimension of the space is the size of the largest set of vectors which can be
linearly independent, and such a set is a called a basis. Any vector in the space can be written
as a sum over basis vectors

|v〉 =
N∑
n=1

vn|n〉

and the numbers vn are called the coefficients or components of the vector in that basis.
For a given basis, specifying the components specifies the vector.

Multiplying any vector by zero gives the null vector, which properly should be written |0〉 but
is often written simply as 0. Indeed in QM, |0〉 may denote the ground state of a system, and
in quantum field theory it may denote the vacuum.

We are usually concerned with spaces in which two vectors can be combined to give a com-
plex number; this is the inner product which is written 〈w|v〉 = 〈v|w〉∗. Note that if
|w〉 = α|a〉 + β|b〉, α and β being complex numbers, then 〈w|v〉 = α∗〈a|v〉 + β∗〈b|v〉 This
is called conjugate- or skew-linearity.

We may write vectors of a basis as {|v1〉, |v1〉 . . . |vN〉} or simply as {|1〉, |2〉 . . . |N〉}. It is very
useful to work with orthonormal bases for which 〈m|n〉 = δmn.

When the vectors we are talking about are ordinary vectors in real 3-D space, we will tend not
to use Dirac notation. Cartesian unit vectors forming an orthonormal basis in that space will
be written {e1, e2, e3}. Here the inner product is the familiar scalar product.

Operators act on vectors to produce new vectors: Q̂|v〉 = |w〉. The matrix element of Q̂
between two vectors is defined as 〈u|Q̂|v〉 = 〈u|w〉. The identity operator Î leaves vectors
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unchanged.

The object Â = |u〉〈v| is an operator, since it can act on a vector to give another (which will
always be proportional to |u〉): Â|w〉 = (〈v|w〉)|u〉. If the vectors {|n〉} form an orthonormal
basis, then

N∑
n=1

|n〉〈n| = Î since

(
N∑
n=1

|n〉〈n|

)
|v〉 =

N∑
n=1

|n〉〈n|v〉 =
N∑
n=1

vn|n〉 = |v〉.

This is called the completeness relation.

An operator is fully defined by what it does to the vectors of a basis, since then we can find
what it does to any other vector. For each basis vector |n〉, Q̂|n〉 is a new vector which can
itself be expanded in the basis: Q̂|n〉 =

∑N
mQmn|m〉. These N2 numbers Qnm fully define the

operator, in the same way that the components of vector fully define it (always with respect to
a given basis of course). With an orthonormal basis, we have

vn = 〈n|v〉, Qmn = 〈m|Q̂|n〉 and wm =
N∑
n

Qmnvn.

The final equation is reminiscent of matrix multiplication. We can write the components of a
vector as a vertical list (or column vector), and of an operator as a matrix, to give:

|v〉 −→


v1
v2
...
vN

 =


〈1|v〉
〈2|v〉

...
〈N |v〉

 ≡ v,

〈v| −→ (v∗1, u
∗
2, . . . v

∗
N) = (〈1|v〉, 〈v|2〉, . . . 〈v|N〉) ≡ v†,

Q̂ −→


Q11 Q12 . . . Q1N

Q21 Q22 . . . Q2N
...

...
...
...
...

...
QN1 QN2 . . . QNN

 =


〈1|Q̂|1〉 〈1|Q̂|2〉 . . . 〈1|Q̂|N〉
〈2|Q̂|1〉 〈2|Q̂|2〉 . . . 〈2|Q̂|N〉

...
...

...
...
...

...

〈N |Q̂|1〉 〈N |Q̂|2〉 . . . 〈N |Q̂|N〉

 ≡ Q.

The Qmn are called the matrix elements of Q̂ in this basis. So

〈u|Q̂|v〉 = (u∗1, u
∗
2, . . . u

∗
N)


Q11 Q12 . . . Q1N

Q21 Q22 . . . Q2N
...

...
...
...
...

...
QN1 QN2 . . . QNN



v1
v2
...
vN

 = u†Qv

The symbol −→
name

means “is represented by”, with name being a name or label for the basis,

which will be omitted if the basis is obvious. In different bases, the components and matrix
elements will be different. The corresponding column vectors and matrices are different rep-
resentations of the same vector/operator. (Note though that 〈u|Q̂|v〉 is a just number and
independent of the representation.)

Note that in their own basis, the basis vectors themselves have extremely simple representations:
in a 3-D space, if we use the symbol −→

{1,2,3}
to mean “is represented in the {|1〉, |2〉, |3〉} basis



by”, then

|1〉 −→
{1,2,3}

 1
0
0

 |2〉 −→
{1,2,3}

 0
1
0

 |3〉 −→
{1,2,3}

 0
0
1

 .

If we choose a new orthonormal basis {|n′〉}, vectors and operators will have new coefficients.
With vn = 〈n|v〉, v′n = 〈n′|v〉, Qmn = 〈m|Q̂|n〉 and Q′mn = 〈m′|Q̂|n′〉, and where S is a unitary
matrix (not an representing an operator) defined as Smn = 〈m|n′〉, we have the following
relations between the two representations:

v′n =
∑
j

S∗mn vm ⇒ v′ = S†v; Q′ij = S∗kiQklSlj ⇒ Q′ = S†QS.

For instance the vectors

|1′〉 = 1
2
|1〉+ i√

2
|2〉 − 1

2
|3〉, |2′〉 =

√
1
2
(|1〉+ |3〉), |3′〉 = 1

2
|1〉 − i√

2
|2〉 − 1

2
|3〉

are orthonormal and so also form a basis. But in this new basis, the column vectors and matrices
which represent states and operators will be different. For instance if |v〉 = |1〉−|3〉 = |1′〉+ |3′〉
we write

|v〉 −→
{1,2,3}

 1
0
−1

 ≡ v |v〉 −→
{1′,2′,3′}

 1
0
1

 ≡ v′,

and  v1
v2
v3

 =


1
2

√
1
2

1
2

i√
2

0 − i√
2

−1
2

√
1
2
−1

2


 v′1
v′2
v′3

 .

The matrix is S as defined above. We observe that its columns are just the representations of
the new states {|1′〉, |2′〉, |3′〉} in the old basis {|1〉, |2〉, |3〉}: S23 = 〈2|3′〉 etc.

The adjoint of an operator is defined by 〈u|Q̂|v〉 = 〈v|Q̂†|u〉∗. A unitary operator satisfies
Q̂†Q̂ = Î .

A Hermitian operator is its own adjoint: 〈u|Q̂|v〉 = 〈v|Q̂|u〉∗. In practice that means
that Q̂ can act backwards on 〈u| or forward on |v〉, whichever is more convenient. In an
orthonormal basis, Q̂ will be represented by an matrix which equals its adjoint (transposed
complex-conjugate): Qmn = Q∗nm.

Hermitian operators have real eigenvalues and orthogonal eigenvectors which span the space.
(If eigenvalues are repeated, all linear combinations of the corresponding eigenvectors are also
eigenvectors—they form a degenerate subspace—but an orthogonal subset can always be
chosen.) Thus the normalised eigenvectors of Hermitian operators are often chosen as a basis,
typically labelled by the eigenvalues: |λn〉. Two Hermitian operators which commute will have
a common set of eigenvectors with might be labelled by both eigenvalues: |µm, λn〉 .

In its own eigenbasis, a Hermitian operator will be diagonal, with the eigenvalues as the di-
agonal elements. Hence the process of finding the eigenvalues and eigenvectors is often called
diagonalisation. The unitary matrix S whose columns are the normalised eigenvectors can



be used to transform other vectors and operators to this basis.

Since we can add and multiply operators and multiply them by scalars, we can form power
series of an operator and hence define more general functions via their power-series expansion.
The most important function of an operator is the exponential:

eQ̂ ≡
∞∑
n=0

Q̂n

n!
.

Since the corresponding power series for eλ converges for all finite numbers, this is defined for
all Hermitian operators, and its eigenvalues are eλi . (In the eigenbasis of a Hermitian operator,
any function of he operator is also represented by a diagonal matrix whose elements are the
function of the eigenvalues.)

The exponential of a Hermitian operator is a unitary operator.

Functions as vectors

pth-order polynomials in the real variable x (with complex coefficients) form an (p+1)-D vector
space. For p = 3, one examples of a base in this space would be {1, x, x2, x3}, and the repre-
sentation of |v〉 = v0 + v1x+ v2x

2 + v3x
3 in that basis is just the column vector (v0, v1, v2, v3)

>.
Another possible basis would be the first four Hermite polynomials

{H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x}.

in which basis |v〉 −→ (v0 + v2/2, v1/2 + 3v3/4, v2/4, v3/8)>.

More general sets of functions can also form vector spaces, but typically infinite-dimensional
ones, with basis sets involving infinitely many functions. An example would be the set of all
smooth functions f(x) for which

∫∞
−∞ |f(x)|2 dx is finite. We take this as the definition of 〈f |f〉,

with

〈f |g〉 =

∫ ∞
−∞

f ∗(x)g(x) dx.

An example of an orthonormal basis for these functions is the set

{|n〉 = NnHn(x)e−x
2/2} for n = 0, 1, 2 . . .

where Nn is a normalisation constant. Then any such function can be represented by an

(infinitely long) list of numbers |f〉 −→
(
〈0|f〉, 〈1|f〉, . . .

)>
.

If we shift our perspective, we can consider the vectors in a infinite-dimensional space as primary,
and the functions as just another representation—the position-space representation, in
which |f〉 −→

x
f(x). With that viewpoint, the value f(x0) of the function at some value x = x0

is like a component of the vector, and can be found by taking the inner product with a vector
that picks out just that value, |x0〉: f(x0) = 〈x0|f〉. If we don’t want to specify a particular
value, we have f(x) = 〈x|f〉 for the variable x.

With an eye on QM, we will often refer to vectors in a general vector space as states, which
also helps to distinguish them from position and momentum vectors (of which more later).



Operators act on functions to turn one function into another; two simple examples are multi-
plication by x, and differentiation with respect to x. For their action on the abstract states,
we use x̂ and D̂, and we need1

〈x|x̂|f〉 = xf(x), 〈x|D̂|f〉 = df
dx
.

Since
∫
f ∗xg dx = (

∫
g∗xf dx)∗, x̂ is Hermitian. So we see that |x〉 is an eigenstate of x̂:

x̂|x0〉 = x0|x0〉 and x̂|x〉 = x|x〉.

These position eigenstates satisfy (where x and x′ are both values of the position variable)

〈x′|x〉 = δ(x′ − x),

∫ ∞
−∞
|x〉〈x| dx = Î , 〈f |g〉 = 〈f |Î|g〉 =

∫ ∞
−∞

f ∗(x)g(x) dx.

Also since
∫
f ∗ dg

dx
dx = −(

∫
g∗ df

dx
dx)∗, D̂ is anti-hermitian, so iD̂ is Hermitian. In QM we work

with p̂ = −i~D̂, and we can see that [x̂, p̂] = i~. In the abstract vector space, this commutation
relation defines p̂. In position space, these operators are represented by2

x̂ −→
x

x, p̂ −→
x
−i~ d

dx
.

We can define eigenstates of p̂, |p〉, which have the following representation in position space:

|p〉 −→
x
〈x|p〉 = 1√

2π~ eipx/~,

and which satisfy

〈p′|p〉 = δ(p′ − p),
∫ ∞
−∞
|p〉〈p| dp,= Î 〈f |g〉 = 〈f |Î|g〉 =

∫ ∞
−∞

f̃ ∗(p)g̃(p) dp.

Up to factors of ~, 〈p|f〉 = f̃(p) is the Fourier transform of f(x), and is an equally valid
representation—in what we call momentum space—of the abstract state |f〉. The numerical
equality of 〈f |g〉 calculated in the position and momentum representations is a reflection of
Parseval’s theorem.

We note that the states |n〉 defined above whose position-space representation is a Hermite
polynomial times a Gaussian are actually eigenstates of x̂2− D̂2, with eigenvalues λn = 2n+ 1.
In this basis x̂ and p̂ are represented by infinite-dimensional matrices, and it can be shown that
for both, only matrix elements where m and n differ by ±1 are non-zero.

In the extension to functions of three coordinates x, y and z there are operators associated
with each, x̂, ŷ and ẑ, which commute, and corresponding momentum operators p̂x, p̂y and
p̂z, which also commute. Between the two sets the the only non-vanishing commutators are
[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i~.

1Shankar uses X̂ for a dimensionless position variable, and K̂ = −iD̂ as a dimensionless version of p̂, but we
stick with the QM notation.

2actually as these are operators, it is more accurate to give the matrix elements x̂ −→
x
〈x′|x̂|x〉 = xδ(x′ − x)

and p̂ −→
x
〈x′|p̂|x〉 = −i~dδ(x−x′)

dx′ , which then are integrated over x′ in any expression, but as this has just the

net effect of setting x′ to x we never bother with this more correct version.



The position operator, x̂, is x̂ ex + ŷ ey + ẑ ez in a particular Cartesian coordinate system3, and
similarly p̂. Boldface-and-hat now indicates a vector operator, i.e. a triplet of operators.
The eigenstate of position is |x, y, z〉 ≡ |r〉:

x̂|r〉 =
(
x̂ ex + ŷ ey + ẑ ez

)
|r〉 =

(
x ex + y ey + z ez

)
|r〉 = r|r〉,

p̂|p〉 =
(
p̂x ex + p̂y ey + p̂z ez

)
|p〉 =

(
px ex + py ey + pz ez

)
|p〉 = p|p〉.

In position space, x̂ −→
r

r and p̂ −→
r
−i~∇. Momentum eigenstates are

|p〉 −→
r
〈r|p〉 =

(
1
2π

)3/2
eip·r/~,

which is a plane wave travelling in the direction of p. Also

〈f |g〉 =

∫ ∞
−∞

f ∗(r)g(r) d3r, 〈r|r′〉 = δ(r− r′) = δ(x− x′)δ(y − y′)δ(z − z′).

Commutators

Let Â, B̂ and Ĉ be arbitrary operators in some space. Then the following relations are very
useful:

ÂB̂ = B̂Â+ [Â, B̂],

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ],

[ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ],

[Â, B̂n] = n[Â, B̂]B̂n−1 provided [Â, B̂] commutes with B̂.

eÂeB̂ = eÂ+B̂+[Â,B̂]/2 provided [Â, B̂] commutes with Â and B̂.

Let Q(x) be a polynomial with derivative R(x). Then

[p̂x, Q(x̂)] = −i~R(x̂) ⇒ [p̂x, Q(x̂)] −→
x
−i~dQ(x)

dx
.

Similarly if V (r) is a function of position in 3-D,

[p̂, V (x̂)] −→
r
−i~∇V (r).

3we do not use r̂ since that is reserved for the unit vector r/r!



A.2 Series Solution of Hermite’s equation and the Har-

monic Oscillator

Shankar 7.3

Griffiths 2.3.2

We consider a particle moving in a 1D quadatic potential V (x) = 1
2
mω2x2, like a mass on a

spring. The Hamiltonian operator is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (A.1)

We will work in rescaled dimensionless coordinates, defining the length scale x0 =
√

~/mω, so
x̂→ x0y and p̂→ (−i~/x0)d/dy. The energy scale is 1

2
mω2x20 = 1

2
~ω. We are looking for wave

functions φ(y), of energy E = 1
2
~ωE, which satisfy

− d2φ

dy2
+ y2φ = Eφ. (A.2)

If we write φ(y) ≡ f(y)e−y
2/2, this can be rewritten as

d2f

dy2
− 2y

df

dy
+ (E− 1)f = 0. (A.3)

This is Hermite’s differential equation. If we look for a series solution of the form
f(y) =

∑∞
j=0 cjy

n, we get

∞∑
j=2

j(j − 1)cjy
j−2 − 2

∞∑
j=1

jcjy
j + (E− 1)

∞∑
j=0

cny
j = 0

⇒
∞∑
j=0

(
(j + 1)(j + 2)cj+2 + (E− 1− 2j)cj

)
yj = 0 (A.4)

where we have changed the summation index in the first sum before relabelling it j. The only
way a polynomial can vanish for all y is if all the coefficients vanish, so we have a recurrence
relation:

(j + 1)(j + 2)cj+2 + (E− 1− 2j)cj = 0. (A.5)

Given c0 and c1, we can construct all other coefficients from this equation, for any E. We can
obtain two independent solution, as expected for a second order differential equation: even
solutions with c1 = 0 and odd ones with c0 = 0.

However, we need the wave function to be normalisable (square integrable), which means that
it tends to 0 as x → ±∞. In general an infinite polynomial times a Gaussian will not satisfy
this, and these solutions are not physically acceptable. If we look again at equation (A.5),
though, we see that if E = 1 + 2n for some integer n ≥ 0, then cn+2, cn+4, cn+6 . . . are all zero.
Thus for E = 1, 5, 9 . . . we have finite even polynomials, and for E = 3, 7, 11 . . . we have finite
odd polynomials. These are called the Hermite polynomials.

Rewriting (A.5) with E = 1 + 2n as

cj+2 =
2(j − n)

(j + 1)(j + 2)
cj, (A.6)



we have for instance, for n = 5,

c3 = 2(1−5)c1/(2.3) = −4c1/3 c5 = 2(3−5)c3/(4.5) = −c3/5 = 4c1/15, c7 = c9 = . . . = 0,
(A.7)

and H5(y) = c1(4y
5−20y3+15y)/15. The conventional normalisation uses 2n for the coefficient

of the highest power of y, which would require c1 = 120, and H5(y) = 32y5 − 160y3 + 120y.
The first four are:

H0(y) = 1; H1(y) = 2y; H2(y) = 4y2−2; H3(y) = 8y3−12y; H4(y) = 16y4−48y2+12. (A.8)

The corresponding solutions of the original Hamiltonian, returning to unscaled coordinates, are

φn(x) = (2nn!)−1/2Hn( x
x0

)× (πx20)
−1/4 exp

(
−x2/(2x20)

)
;

with energies En = (n+ 1
2
)~ω.

Just as in the square well, the restriction to solutions which satisfy the boundary conditions
has resulted in quantised energy levels.

The wave functions and probablility densities are illustrated below.

Figure A.1: Energy levels and wave functions of the Harmonic oscillator, from Florida State
University Physics wiki:
http://wiki.physics.fsu.edu/wiki/index.php/Harmonic Oscillator Spectrum and Eigenstates



A.3 Angular Momentum in Quantum Mechanics

The following section was prepared in another contex and so does not use Dirac notation; I
would use | ↑〉 etc for spi states.

Orbital angular momentum

We start with the classical definition of orbital angular momentum. In quantum mechanics the
position and momentum vectors become operators, so

L = r× p⇒ L̂z = −i~
(
x
∂

∂y
− y ∂

∂x

)
= −i~ ∂

∂φ
etc

[L̂x, L̂y] = i~L̂z etc; [L̂2, L̂i] = 0;

The commutation relations imply that we can only simultaneously know L2 and one component,
taken conventionally to be Lz. The common eigenfunctions of L̂2 and L̂z are the spherical
harmonics, Y m

l (θ, φ):

L̂2Y m
l (θ, φ) = ~2 l(l + 1)Y m

l (θ, φ) L̂zY
m
l (θ, φ) = ~mY m

l (θ, φ)

From requirements that the wave function must be finite everywhere, and single-valued under
φ→ φ+ 2π, it emerges that l and m are integers and must satisfy

l = 0, 1, 2 . . . , m = −l,−l + 1, . . . l.

These have definite parity of (−1)l, since under r→ −r,

Y m
l (θ, φ)→ Y m

l (π − θ, φ+ π) = (−1)lY m
l (θ, φ).

See the end of these notes for some explicit forms of spherical harmonics.

Intrinsic and total angular momentum

Orbital angular momentum is not the only source of angular momentum, particles may have
intrinsic angular momentum or spin. The corresponding operator is Ŝ. The eigenvalues of Ŝ2

have the same form as in the orbital case, ~2s(s + 1), but now s can be integer or half integer;
similarly the eigenvalues of Ŝz are ~ms, with

s = 0, 1
2
, 1, 3

2
. . . , ms = −s,−s+ 1, . . . s.

s = 1
2

for an electron, s = 1 for a photon or W boson. This means that the magnitude of the

spin vector of an electron is (
√

3/2)~, but we always just say “spin-1
2
”.

If a particle has both orbital and spin angular momentum, we talk about its total angular
momentum, with operator

Ĵ = L̂ + Ŝ.

As with spin, the eigenvalues of Ĵ2 are ~2j(j + 1),

j = 0, 1
2
, 1, 3

2
. . . , mj = −j,−j + 1, . . . j.



Systems composed of more than one particle (hadrons, nuclei, atoms) will have many contribu-
tions to their total angular momentum. It is sometimes useful to add up all the spins to give a
total spin, and now, confusingly, we denote the quantum numbers by S and MS, so it is really
important to distinguish operators and the corresponding quantum numbers. Then

Ŝtot = Ŝ(1) + Ŝ(2) + . . . ,

where the superscripts (1), (2) refer to the individual particles.

Similarly we use L̂tot with quantum numbers L and ML, and Ĵtot with quantum numbers J and
MJ . When talking about angular momentum generally, we often use Ĵ to refer to any angular
momentum, whether single or multiple particle, pure spin, pure orbital or a combination.

The following rules are obeyed by any angular momentum (eg Ĵ can be replaced by L̂ or Ŝ, for
a single particle of composite system):

[Ĵx, Ĵy] = i~Ĵz etc; [Ĵ2, Ĵi] = 0;

It follows that the eigenvalues of (L̂tot)2, (Ŝtot)2 and (Ĵtot)2 have exactly the same form, with
the same restrictions on the quantum numbers, as those for a single particle. So for instance
the eigenstates of (Ŝtot)2 are ~2S(S + 1), and of Ŝtot

z are ~Ms, and

L = 0, 1, 2 . . . , S = 0, 1
2
, 1, 3

2
. . . , J = 0, 1

2
, 1, 3

2
. . . ,

ML = −L,−L+ 1, . . . L, MS = −S,−S + 1, . . . S, MJ = −J,−J + 1, . . . J.

Addition of angular momentum

The rules for the addition of angular momentum are as follows: we start with adding orbital
angular momentum and spin for a composite system with quantum numbers L and S. Angular
momentum is a vector, and so the total can be smaller as well as greater that the parts; however
the z-components just add. The allowed values of the total angular momentum quantum
numbers are

J = |L− S|, |L− S|+ 1, . . . , L+ S, MJ = ML +MS.

However since L̂z and Ŝz do not commute with Ĵ2, we cannot know J , ML and MS simultane-
ously. For a single-particle system, replace J , L, and S with j, l, and s.

More generally, for the addition of any two angular momenta with quantum numbers J1,M1

and J2,M2, the rules are

J = |J1 − J2|, |J1 − J2|+ 1, . . . , J1 + J2, MJ = M1 +M2

and again we cannot know J , M1 and M2 simultaneously.

Confusingly, when referring to a composite particle (eg a hadron or nucleus), the total angular
momentum is often called its “spin” but given the quantum number J . Sometimes this usage
even extends to elementary particles. For the electron and proton, s is more common though.

For the case of a spin-1
2

particle, the eigenvalues of Ŝz are ±1
2
~, and here we will just denote

these states by ↑ and ↓ (αz and βz are also often used); hence

Ŝ2↑ =
3

4
~2↑ Ŝ2↓ =

3

4
~2↓

Ŝz↑ = 1
2
~↑ Ŝz↓ = −1

2
~↓



For two such particles there are four states ↑↑, ↓↓, ↑↓ and ↓↑. The first two states have MS = 1
and −1 respectively, and we can show, using Ŝtot = Ŝ(1) + Ŝ(2), that they are also eigenstates of
(Ŝtot)2 with S = 1. However the second two, though they have MS = 0, are not eigenstates of
(Ŝtot)2. To make those, we need linear combinations, tabulated below:

S = 1 S = 0
M = 1 ↑↑
M = 0 1√

2
(↑↓+ ↓↑) 1√

2
(↑↓ − ↓↑)

M = −1 ↓↓

The S = 1 states are symmetric under exchange of particles; the S = 0 states are antisymmetric.
For a system of N spin-1

2
particles, S will be integer if N is even and half-integer if N is odd.

Bosons and Fermions

Particles with half-integer spin (electrons, baryons) are called fermions, those with integer spin,
including J = 0, (mesons, photons, Higgs) are called bosons. The “Pauli exclusion principle”
applies to fermions, but it is a special case of the “spin-statistics theorem” which says that the
overall quantum state of a system of identical fermions must be antisymmetric under exchange
of any pair, while that of a system of identical bosons must be symmetric. There may be several
components to the state (spatial wave function, spin state...).

Examples of the consequences of the spin-statistics theorem are:

• If two electrons in an atom are in the same orbital (thus their spatial wave function is
symmetric under exchange of the two), they must be in an S = 0 state.

• Thus the ground state of helium has S = 0, but the excited states can have S = 0
(parahelium) or S = 1 (orthohelium).

• Two π0 mesons must have even relative orbital angular momentum L (they are spinless,
so this is the only contribution to their wave function).

• Two ρ0 mesons (spin-1 particles) can have odd or even relative orbital angular momentum
L, but their spin state must have the same symmetry as their spatial state. (In this case,
S = 2 and 0 are even, S = 1 is odd.)

Note that in the last two, in the centre-of-momentum frame the spatial state only depends on
the relative coordinate r. So interchanging the particles is equivalent to r→ −r, ie the parity
operation.



Spherical Harmonics

In spherical polar coordinates the orbital angular momentum operators are

L̂x = 1
2
(L̂+ + L̂−) and L̂y = 1

2i
(L̂+ − L̂−), where

L̂+ = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
, L̂− = L̂†+ = ~e−iφ

(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
;

L̂z = −i~ ∂

∂φ
, L̂2 = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
.

∇2ψ =
1

r

∂2

∂r2
rψ − 1

~2r2
L̂2ψ;

The spherical harmonics, Y m
l (θ, φ) are eigenfunctions of L̂2 and L̂z; the first few are as follows

Y 0
0 (θ, φ) =

√
1

4π
Y ±11 (θ, φ) = ∓

√
3

8π
sin θ e±iφ

Y 0
1 (θ, φ) =

√
3

4π
cos θ Y ±22 (θ, φ) =

√
15

32π
sin2 θ e±2iφ

Y ±12 (θ, φ) = ∓
√

15

8π
sin θ cos θ e±iφ Y 0

2 (θ, φ) =

√
5

16π
(3 cos2 θ − 1)



A.4 Hydrogen wave functions

The solutions of the Schrödinger equation for the Coulomb potential V (r) = −~cα/r have
energy En = − 1

n2ERy, where ERy = 1
2
α2mc2 = 13.6 eV (with m the reduced mass of the

electron-proton system). (Recall α = e2/(4πε0~c) ≈ 1/137.) The spatial wavefunctions are
ψnlm(r) = Rn,l(r)Y

m
l (θ, φ).

The radial wavefunctions are as follows, where a0 = ~c/(mc2α):

R1,0(r) =
2

a
3/2
0

exp

(
− r

a0

)
,

R2,0(r) =
2

(2 a0)3/2

(
1− r

2 a0

)
exp

(
− r

2 a0

)
,

R2,1(r) =
1√

3 (2 a0)3/2
r

a0
exp

(
− r

2 a0

)
,

R3,0(r) =
2

(3 a0)3/2

(
1− 2 r

3 a0
+

2 r2

27 a 2
0

)
exp

(
− r

3 a0

)
,

R3,1(r) =
4
√

2

9 (3 a0)3/2
r

a0

(
1− r

6 a0

)
exp

(
− r

3 a0

)
,

R3,2(r) =
2
√

2

27
√

5 (3 a0)3/2

(
r

a0

)2

exp

(
− r

3 a0

)
.

They are normalised, so
∫∞
0

(Rn,l(r))
2r2dr = 1. Radial wavefuntions of the same l but different

n are orthogonal (the spherical harmonics take care of orthogonality for different ls).

The following radial integrals can be proved:

〈r2〉 =
a20 n

2

2

(
5n2 + 1− 3l (l + 1)

)
,

〈r〉 =
a0
2

(
3n2 − l (l + 1)

)
,〈

1

r

〉
=

1

n2a0
,〈

1

r2

〉
=

1

(l + 1/2)n3 a 2
0

,〈
1

r3

〉
=

1

l (l + 1/2) (l + 1)n3 a30
.

For hydrogen-like atoms (single-electron ions with nuclear charge |e|Z) the results are obtained
by substituting α→ Zα (and so a0 → a0/Z).



A.5 Properties of δ-functions

The δ-function is defined by its behaviour in integrals:∫ b

a

δ(x− x0)dx = 1;

∫ b

a

f(x)δ(x− x0) dx = f(x0)

where the limits a and b satisfy a < x0 < b; the integration simply has to span the point on
which the δ-function is centred. The second property is called the sifting property because
it picks out the value of f at x = x0.

The following equivalences may also be proved by changing variables in the corresponding
integral (an appropriate integration range is assumed for compactness of notation):

δ(ax− b) = 1
|a|δ(x−

b
a
) since

∫
f(x)δ(ax− b) dx = 1

a
f( b

a
)

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

where the xi are the (simple) real roots of g(x).

Note that the dimensions of a δ-function are the inverse of those of its argument, as should be
obvious from the first equation.

Though the δ-function is not well defined as a function (technically it is a distribution rather
than a function), it can be considered as the limit of many well-defined functions. For instance
the “top-hat” function which vanishes outside a range a and has height 1/a tends to a δ-
function as a → ∞. Similarly a Gaussian with width and height inversely proportial tends to
a δ-function as the width tends to zero. These are shown in the first two frames below.

Two less obvious functions which tend to a δ-function, shown in the next two frames, are the
following:

1
2π

∫ L

−L
ei(k−k

′)x dx = L
π

sinc
(
(k − k′)L

) L→∞−→ δ(k − k′)

L
π

sinc2
(
(k − k′)L

) L→∞−→ δ(k − k′)

The first of these does not actually vanish away from the peak, but it oscillates so rapidly
that there will be no contribution to any integral over k′ except from the point k′ = k. This
is the integral which gives the orthogonality of two plane waves with different wavelengths:
〈k|k′〉 = δ(k − k′). It also ensures that the inverse Fourier transform of a Fourier transform
recovers the original function.

That the normalisation (for integration over k) is correct follows from the following two integrals:∫∞
−∞ sinc(t)dt = π and

∫∞
−∞ sinc2(t)dt = π. The second of these follows from the first via

integration by parts. The integral
∫∞
−∞ sinc(t)dt = Im I where I =

∫∞
−∞

(
eit/t

)
dt may be done

via the contour integral below:



As no poles are included by the contour, the full contour integral is zero. By Jordan’s lemma
the integral round the outer circle tends to zero (as R → ∞, eiz decays exponentially in the
upper half plane). So the integral along the real axis is equal and opposite to the integral over
the inner circle, namely −πi times the residue at x = 0, so I = iπ. So the imaginary part, the
integral of sinc(x), is π.



A.6 Gaussian integrals

The following integrals will be useful:∫ ∞
−∞

e−αx
2

dx =

√
π

α
and

∫ ∞
−∞

x2ne−αx
2

dx = (−1)n
dn

dαn

(√
π

α

)
These work even for complex α, so long as Re [α] ≥ 0

Often we are faced with a somewhat more complicated integral, which can be cast in Gaussian
form by “completing the square” in the exponent and then shifting integration variable x →
x− β/(2α): ∫ ∞

−∞
e−αx

2−βxdx = eβ
2/(4α)

∫ ∞
−∞

e−α(x+β/(2α))
2

dx =

√
π

α
eβ

2/(4α)

This works even if β is imaginary.

The two contours below illustrate the two results for complex parameters α or β. For the first,
in (a), we rewrite αx2 as |α|z2 where z = x exp(iArg [α]/2), so the integral we want is along
the blue line, with R → ∞. Since there are no poles, by Cauchy’s theorem the integral along
the blue contour must equal the sum of those along the red and black countours. As R → ∞
the red one gives the known real integral. Since e−|α|z

2
tends to zero faster than 1/R as R→∞

providing |x| > |y|, the contribution from the black paths is zero as R → ∞. Hence the red
and blue integrals are the same, provided Arg [α] ≤ π/2.

For the second, in (b), the blue contour is the desired integral one after the variable change
(for β imaginary). Again the red and black paths together must equal the blue and again the
contribution from the black paths is zero. Hence the two integrals must be the same.

z

R

y

x

|β|/2α

z

R

y

x

(a) (b)



A.7 Airy functions

Airy functions are the solutions of the differential equation:

d2f

dz2
− zf = 0

There are two solutions, Ai(z) and Bi(z); the first tends to zero as z → ∞, while the second
blows up. Both are oscillatory for z < 0. The Mathematica functions for obtaining them are

AiryAi[z] and AiryBi[z].

The asymptotic forms of the Airy functions are:

Ai(z)
z→∞−→ e−

2
3
z3/2

2
√
πz1/4

and Ai(z)
z→−∞−→

cos
(

2
3
|z|3/2 − π

4

)
√
π |z|1/4

Bi(z)
z→∞−→ e

2
3
z3/2

√
πz1/4

and Bi(z)
z→−∞−→

cos
(

2
3
|z|3/2 + π

4

)
√
π |z|1/4

The Schrödinger equation for a linear potential V (x) = βx in one dimension can be cast in the
following form

− ~2

2m

d2ψ

dx2
+ βxψ − Eψ = 0

Defining z = x/x0, with x0 = (~2/(2mβ))1/3, and E = (~2β2/(2m))1/3µ, and with y(z) ≡ ψ(x),
this can be written

d2y

dz2
− zy + µy = 0.

The solution is

y(z) = C Ai(z−µ)+DBi(z−µ) or ψ(x) = C Ai
(
(βx−E)/(βx0)

)
+DBi((βx−E)/(βx0)

)
where D = 0 if the solution has to extend to x = ∞. The point z = µ, x = E/β is the point
at which E = V and the solution changes from oscillatory to decaying / growing.

The equation for a potential with a negative slope is given by substituting z → −z in the
defining equation. Hence the general solution is ψ(x) = C Ai(−x/x0 − µ) + DBi(−x/x0 − µ),
with D = 0 if the solution has to extend to x = −∞.

The first few zeros of the Airy functions are given in Wolfram MathWorld.

http://mathworld.wolfram.com/AiryFunctionZeros.html


A.8 Units in EM

There are several systems of units in electromagnetism. We are familiar with SI units, but
Gaussian units are still very common and are used, for instance, in Shankar.

In SI units the force between two currents is used to define the unit of current, and hence the
unit of charge. (Currents are much easier to calibrate and manipulate in the lab than charges.)
The constant µ0 is defined as 4π× 10−7 N A−2, with the magnitude chosen so that the Ampère
is a “sensible” sort of size. Then Coulomb’s law reads

F =
q1q2

4πε0 |r1 − r2|2

and ε0 has to be obtained from experiment. (Or, these days, as the speed of light is now has a
defined value, ε0 is obtained from 1/(µ0c

2).)

However one could in principle equally decide to use Coulomb’s law to define charge. This is
what is done in Gaussian units, where by definition

F =
q1q2

|r1 − r2|2

Then there is no separate unit of charge; charges are measured in N1/2 m (or the non-SI equiv-
alent): e = 4.803 × 10−10 g1/2 cm3/2 s−1. (You should never need that!) In these units,
µ0 = 4π/c2. Electric and magnetic fields are also measured in different units.

The following translation table can be used:

Gauss e E B

SI e/
√

4πε0
√

4πε0 E
√

4π/µ0 B

Note that eE is the same in both systems of units, but eB in SI units is replaced by eB/c in
Gaussian units. Thus the Bohr magneton µB is e~/2m in SI units, but e~/2mc in Gaussian
units, and µBB has dimesions of energy in both systems.

The fine-structure constant α is a dimensionless combination of fundamental units, and as such
takes on the same value (≈ 1/137) in all systems. In SI it is defined as α = e2/(4πε0 ~c), in
Gaussian units as α = e2/( ~c). In all systems, therefore, Coulomb’s law between two particles
of charge z1e and z2e can be written

F =
z1z2 ~cα
|r1 − r2|2

and this is the form I prefer.
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