
PHYS30201 Advanced Quantum Mechanics: Examples 5

In all questions below referring to a spherical finite square well, the potential is given by
V (r) = −V0 for r < a and V (r) = 0 for r > a. We also define b = 2mV0/~2, which has units
of inverse length squared; note that here, contrary to in lectures, definitions are such that b is
positive for a well. We use k =

√
2mE/~ and k′ =

√
2m(V0 + E)/~ to denote wavenumbers

outside and inside the well respectively; if E < 0 we use κ = −ik =
√

2m|E|/~.

34. Verify that all the transitions you drew for question 27 are in fact consistent with the electric
dipole selection rules.

List the allowed decays of the 4f5/2 and 4p3/2 states of hydrogen.

Discuss the allowed transitions between all the states of helium with the electronic configu-
rations 1s2, 1s 2s,1s 2p and 1s 3d, assuming exact LS coupling. Which decays can take place
due to the fact that LS coupling is not exact?

35. (Challenge question) In this question you will calculate the cross section for the electric
field of an EM wave of a given frequency to liberate an electron from the ground state
of hydrogen—an example of the photoelectric effect. We will take the final state to be a
completely free electron in a plane wave state |kf〉, ignoring the fact that in reality it still feels
the Coulomb attraction of the proton —we expect this will be a reasonable approximation if
the energy of the photon is much greater than the ionisation energy. (Not too large though,
as we will continue to use the electric dipole approximation.) See Shankar if you get stuck
at any point.

The cross section for absorption is defined as the rate of energy absorbed from the field
divided by the energy flux. Starting from Fermi’s golden rule for monochromatic radiation,
show that the cross section is
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2 = 4π2~ωα |〈kf |ε · r|100〉|2 δ(Ef − E0 − ~ω)

where E0 is the energy of the 1s state, and check that it has units of area. Verify that
p̂i = m

i~ [x̂i, Ĥ0] and so ωfi〈kf |ε · r|100〉 = − i
m
〈kf |ε · p̂|100〉 (this trick makes the matrix

element easier to evaluate though it isn’t essential). Show that
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(Hint - take the z-axis to lie along kf in order to do the angle integration; the 1/
√
V , where

V is the volume of the large box we are working in, comes from normalising |kf〉.) Hence
write down the cross section and describe the angular distribution of the emitted electron.

Finally integrate over all values of kf using the density of states for a non-relativistic particle,
to get the total cross section
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36. Show that, in the Born approximation, the scattering amplitude for a spherical finite square
well of depth V0 and radius a is

f(k, θ) = − b

q3
(sin aq − aq cos aq)

where q = 2k sin(θ/2) and θ is the scattering angle. Hence show that at low energies (ak � 1)
the total cross section is approximately 4πa2(ba2)2/9.



37. Show that the condition for a spherical finite square well to have an s-wave bound states
of energy E is given by the solutions of the equation

√
b− (k′)2 = −k′ cot k′a. (Hint: it is

easiest to solve the equivalent one-dimensional problem, but if you want to work in 3D for
practice, the wave function outside the well will have the form exp(−κr)/r.)
Hence verify that the condition for zero-energy s-wave bound states is a

√
b = (2n− 1)π/2,

for positive integer n.

38. Show that the l = 0 phase shift for a spherical finite square well is given by δ0 = −ak +
arctan(k tan(ak′)/k′).

Show that (unless tan(ak′) happens to be very large) the s-wave cross section at zero energy
is given by σ0(k = 0) = 4π(a− tan(a

√
b)/
√
b)2

Hence show that at low energies and for shallow wells (ak � 1 and a
√
b � 1), σ0 agrees

with the Born aproximation.

Verify that if the well has a zero-energy bound state, the low-energy phase shift is δ0 =
π/2 − ak/2 + O(k2). (This is the only exception to the rule that the phase-shift at the
origin is a multiple of π. It requires careful treatment of limits as k → 0; work in terms of
cot(δ0 + ka).)

39. Though low-energy s-wave scattering is usually strong, for particular values of b it vanishes
because δ0 = π. Show that the condition can be expressed as tan k′a = k′a (k′a not being
small). Sketch the wave function with and without the potential in this case. This is the
Ramsauer-Townsend effect, which has been observed in electron scattering from rare-gas
atoms.

40. (Challenge question) Consider p-wave scattering from a spherical finite square well. Sketch
the well and find the highest value of ka for which a quasi-bound state might exist.

Show that the condition for a well to have a zero-energy bound state of angular momentum
l > 0 is jl−1(a

√
b) = 0. (You will find useful the relation f ′l (z) = fl−1 − (l− 1)fl/z, where fl

stands for jl, nl, or any linear combination of the two, which is true for l > 0. In addition
the combination h(1)

l (kr) ≡ jl(kr) + inl(kr) is exponentially decaying for k = iκ.)

Show that for l = 1, there are zero-energy bound states for b = (nπ/a)2, for non-negative
integer n.

If b is just below one of these critical values, ie b = (nπ/a)2−db, there will be a quasi-bound
state at k = kr ≡

√
db/3, and in its vicinity we can write

δ1(k) = −ka+ arctan

(
adb

9(kr − k)

)
.

You are not required to prove this, but check it numerically for some db� 1 and a range of
values of k in the vicinity of kr against the exact answer

δ1(k) = −ka+ arccot

[
1 + ( k

k′ )
2(ak′ cot(ak′)− 1)

ak

]

Show that such a form gives a Breit-Wigner cross section as a function of energy and identify
the lifetime Γ. (It is useful to note that eiδ sin δ = (cot δ − i)−1.)


