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PHYS30201 Advanced Quantum Mechanics: Examples 2

Prove the following commutator relations. A ete are arbitrary operators but X, p and
L have their usual meanings. V(x), V(r) and V(r) are arbitrary functions; the second
depends only on the magnitude of the position vector r whereas the third depends on all
three components.

-~ ~

(a) [A, BC] = B[A,C] + [A, B|C.

(b) [La Gl =02, [La,By) = ihps,  [Lay X7 = 0.
~ _dV
(C) [pa:a V(JZ)] - _Zha’
~ L. dV " , .
(d) [pi, V(r)] = —zh'r’id—, p,V(r)] = —ihVV (where 7; = r;/r).
T

(¢) [La, V(r)] =0

(Hint: You will only need to use the position representation where functions of = or r are
involved. In that case it can be useful to provide an arbitrary wave function for derivative
operators to act on. In the position representation we often write x for Z and r for X,
hence V(x).)

. Use Ehrenfest’s theorem to show that for the one-dimensional harmonic oscillator in any

state (not necessarily a stationary state),

d*(z)
e

= _k<f>7

where k is the spring constant.

A particle of mass m is bound by a potential V(r). Show that if the potential is spher-
ically symmetric, V' = V/(r), the expectation value of the angular momentum is conserved.

Now consider a non-spherically symmetric potential V' = V(r) + 2V;(r). Show that <EZ>
is still conserved, and that

d ~ N d -~ A
E<Lx> = —(yVi(r)) and 5<Ly> = (zVi(r))

Show that the right-hand sides do indeed correspond to the components of the expectation
value of the torque.
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Fill in the details of the variational calculation for the V(z) = B3z* potential discussed in
the lectures, using as trial wavefunction ¥ (z) = e~a7*/2 to get an upper bound for the
ground state energy of 3 x 61/3/8 = 0.68 in units of (h*3/m?)/*.

A particle moves in a potential V(z) = B for z > 0 and V (z) = oo for z < 0. Sketch the
potential and the rough form of the ground state solution. Use an appropriate state of
the harmonic oscillator as a trial function (with z as a variational parameter) to obtain
an upper bound on Ey. Try any other suitable trial function you can think of and see if
it gives a better bound. (Hint: the exact answer is 2.338( A%/3%/2m)"?. If you make the
wrong choice of trial function, you might get an answer below this. Think carefully about
what might have gone wrong, and why the variational principle is not violated.)

The solution to the differential equation y”(z) — zy(2) + py(z) = 0 can be written in terms
of Airy functions (these are special functions like Bessel functions whose roots can only
be found numerically): y = C'Ai(z — u) + DBi(z — p). You are strongly encouraged to
use Mathematica (or a handbook of special functions) to explore these solutions, and to
reproduce the exact result quoted above.

Consider the three-dimensional problem with potential V' (r) = —fBe " /r. As is typically
the case in 3D, for finite pu if the potential is too weak there will not be any bound-state
solutions. Use a trial wavefunction W(r) = e~"/* to find a value of 3/u, above which at
least one bound state is guaranteed. What can we say in the g — 0 limit?

Using products of Z = 2 hydrogenic single-particle wave functions, write down trial
wave functions for the first two excited states of helium (the 1s'2s! states of ortho- and
parahelium). Which of the two could be used to generate a true upper bound on the
energy level of the state?

Show the the electron-electron repulsion energy in the two states can be written J + K
for parahelium and J — K for orthohelium, where

J = fica /OOO ry (RZ5%(ry))’ </0 r? (RZ52(r))” drl) dry
+ /OOO r2 (RE5%(r2))” (/OO r (RfOQ(rl))2dr1> drs

T2

K = hc&/ rng§2(r2)R§§2(r2) (/ T%RfOZQ(Tl)RQZp:z(Tl)dﬁ) dry
0 0

+/ r%RfOZQ(TQ)RQZ’[):z(TQ) </ rlRf§2(r1)R§§2(r1)dr1) dry
0

T2

and R77?(r) are the normalised radial wave functions as given in section A.3 of the notes.
Given that the integrals contained in J and K are 34/(81ag) and 32/(729ay) respectively,
estimate the first ionisation energy of each state. How might you refine your trial wave
functions?



