
Mathematical Methods for Physics

Judith McGovern

March 21, 2022



Contents

1 Second Order ODEs and Sturm-Liouville theory 3
1.1 General 2nd Order ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Linear independence and second solutions . . . . . . . . . . . . . . . . . 4
1.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Sturm-Liouville theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Sturm-Liouville and Hermitian operators . . . . . . . . . . . . . . . . . . 6
1.2.2 Sturm-Liouville eigenvalue equations . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Application to quantum mechanics and casting equations in Sturm-Liouville

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Bessel functions of integer order . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Rodrigues’ Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Series solutions to differential equations . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Series solutions about ordinary points . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Frobenius’s method and Bessel functions . . . . . . . . . . . . . . . . . . 18

1.5 Transform methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 Fourier Transforms: differential equations defined on an infinite interval 21
1.5.2 Laplace Transforms: differential equations with initial conditions . . . . . 23

2 Green’s Functions 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Continuity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Eigenfunction expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Initial value boundary conditions . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 “Outgoing wave” boundary conditions . . . . . . . . . . . . . . . . . . . 32
2.2.5 First order equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Differential equations in time and space . . . . . . . . . . . . . . . . . . . 34
2.3.3 Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Helmholtz’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.6 Wave Equation as (n+ 1)D Fourier transform . . . . . . . . . . . . . . . 41
2.3.7 The free Schrödinger equation and the Born approximation . . . . . . . . 42

1



3 Integral Equations 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Special methods of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Displacement kernels and integral transforms . . . . . . . . . . . . . . . . 49
3.2.2 Separable kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Hilbert-Schmidt theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Neumann series: perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Calculus of Variations 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Constrained minimisation and Lagrange multipliers . . . . . . . . . . . . . . . . 60
4.3 Endpoints not fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Rayleigh-Ritz variational technique . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Estimation of lowest eigenvalue and adjustment of parameters . . . . . . 65
4.4.2 Alternative derivation of Rayleigh-Ritz principle . . . . . . . . . . . . . . 66
4.4.3 Use in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Completeness of the eigenfunctions of a Sturm-Liouville problem . . . . . . . . . 67

A Background 68
A.1 Linear and Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 Integration and differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 First-order differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Recap of common differential equations in Physics . . . . . . . . . . . . . . . . . 71
A.5 Systems of algebraic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.5.1 Determinants and zero-modes . . . . . . . . . . . . . . . . . . . . . . . . 74
A.5.2 Uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.6 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.7 Contour Integration for real integrals . . . . . . . . . . . . . . . . . . . . . . . . 77
A.8 Delta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.9 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



1. Second Order ODEs and
Sturm-Liouville theory

1.1 General 2nd Order ODEs

Arfken 7.4, 7.6

(Riley 15.0,15.2)

1.1.1 Introduction

Consider a general linear second order differential equation:1

p0(x)y′′(x) + p1(x)y′(x) + q(x)y(x) = f(x). (1.1)

It is linear because each term on the LHS contains only y, y′ or y′′, not for instance y2 or yy′.
The functions p0, p1, q, and f are assumed to be given and may be complex (but usually are
real), and we want to find y. Usually the functions are defined on a given domain a ≤ x ≤ b.

We often write this schematically as

Ly(x) = f(x), (1.2)

where L is a differential operator that acts on one function to produce another.
The space of functions we will be interested in is that of complex functions of the real

variable x which are square-integrable on the interval x ∈ [a, b], denoted L2[a, b]. These form
a vector space with an inner product (a Hilbert space). We will usually require them to be
at least twice differentiable, except possibly at isolated points, and will not constantly refer to
such restrictions.

If f(x) 6= 0 the equation is inhomogeneous; if f(x) = 0 the equation is homogeneous:

p0(x)y′′(x) + p1(x)y′(x) + q(x)y(x) = 0. (1.3)

Linearity implies that if y1 and y2 are both solutions of the homogeneous equation, then so is
Ay1 +By2 for (complex) constants A and B.

Often we divide (1.1) by p0(x) to get the alternate form of the equation

y′′(x) + P (x)y′(x) +Q(x)y(x) = F (x). (1.4)

or for the homogeneous case

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0. (1.5)

1Most of the time after this introductory section we will be concerned with problems in which p′0 = p1, in
which case we will denote p0 and q0 by −p and q.
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At most values of x, P (x) and Q(x) are finite; such points are ordinary points of the equation.
If, in the vicinity of some point x0, P (x) or Q(x) diverges, but (x− x0)P (x) and (x− x0)2Q(x)
are finite, x0 is called a regular singular point. If P (x) diverges faster than 1/(x − x0) and/or
Q(x) diverges faster than 1/(x− x0)2 we speak of an irregular singular point. The relevance of
this classification for the solutions is as follows: at an ordinary point solutions are analytic and
have Taylor expansions with a radius of convergence governed by the distance to the nearest
singular point in the complex plane. At a regular singular point a solution may be analytic
or at worst will have a pole or a branch point; at least one solution will exist of the form
y(x) = (x − x0)

su(x) where u(x) is analytic and s is a number called the indicial exponent.
(This is called Fuchs’ theorem.) We will meet this again when we seek series solutions of
common differential equations.

1.1.2 Linear independence and second solutions

It is useful to have a way to check if a set of n functions {ui(x)} are linearly independent. By
definition if they not, we can find a set of coefficients ci, not all zero, such that for all x in the
domain,

∑n
i ciui(x) = 0. Assuming the functions to be differentiable at least n − 1 times, we

can obtain further equations for the coefficients by differentiating this equation multiple times;
writing the mth derivative of ui as u

(m)
i , we can combine the first n− 1 equations formed that

way with the original to get:
u1 u2 . . . un
u′1 u′2 . . . u′n
...

...
...

...
...

...

u
(n−1)
1 u

(n−1)
2 . . . u

(n−1)
n




c1
c2

...
cn

 = 0 (1.6)

For any given x this is just a matrix equation, and it can only hold, for ci not all zero, if the
determinant of the matrix vanishes. This determinant is called the Wronskian of the functions
(the “W” is silent).

So if a set of functions is not linearly independent over a domain, their Wronskian vanishes
for all x in the domain. The converse is true also true in all cases of interest to us: a vanishing
Wronskian implies linear dependence. Linearly-independent functions will have a Wronskian
which does not vanish (except possibly at isolated points).

The Wronskian allows us to determine that there are at most two independent solutions
of a homogeneous 2nd order equation. Consider three solutions of the homogeneous equation
(1.5), y1, y2 and y3. Then

W (x) =

∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
Py′1 +Qy1 Py′2 +Qy2 Py′3 +Qy3

∣∣∣∣∣∣ = 0. (1.7)

The determinant vanishes because its third row is a linear combination of the first two. So
there cannot be three independent solutions; one of the three must be a linear combination
of the others. (The proof generalises to n solutions of an nth-order equation, and to a single
solution of a first-order one.)

Given one solution y1, we can always construct another linearly independent one. We have
W [y1(x), y2(x)] = y1y

′
2 − y2y′1, and

dW

dx
= y1y

′′
2 − y2y′′1

= −y1(Py′2 +Qy2) + y2(Py
′
1 +Qy1) = −P (x)W (x),



and so, since
∫

(W ′/W ) dx = lnW , we obtain

W (x) = exp

(
−
∫ x

P (x′)dx′
)
. (1.8)

Furthermore we can rewrite

W = y1y
′
2 − y2y′1 = y21

d

dx

(
y2
y1

)
⇒ y2

y1
=

∫ x W (x′)

y21(x′)
dx′ (1.9)

So finally

y2(x) = y1(x)

∫ x exp
(
−
∫ x′

P (z)dz
)

y21(x′)
dx′. (1.10)

Thus (except at singular points) we can construct a second solution. It may not be orthogonal
to the first, but we can make it so by subtracting off the appropriate amount of y1 (Gram-
Schmidt orthogonalisation). The general solution of the homogeneous equation is Ay1 + By2,
where y1 an y2 are two linearly independent solutions.

An example is a second solution to the differential equation (1 − x2)y′′ − 2xy′ + 2y = 0
(Legendre’s equation with l = 1) for which y1 = x is clearly a solution. Dividing by (1 − x2)
we have P = −2x/(1− x2). The second solution is then

y2(x) = x

∫ x exp
(
−
∫ u −2z

1−z2 )dz
)

u2
du = x

∫ x 1

(1− u2)u2
du =

x

2
log

(
1 + x

1− x

)
− 1 (1.11)

where we have dropped a term cx which would arise from the final constant of integration,
since that is a multiple of y1. This solution diverges at the regular singular points x = ±1.
For future reference we note that this function is given the symbol Q1(x), while the polynomial
solution is P1(x) = x.

Returning to the inhomogeneous equation Lu = f , if u and v are both solutions we have
L(u − v) = 0. So u − v is a solution of the homogeneous equation. We can write the general
solution to the inhomogeneous equation as u(x)+Ay1(x)+By2(x), where u is any solution of the
inhomogeneous equation. u(x) is called the particular integral and the rest the complementary
function.

1.1.3 Boundary conditions

Up till now we have not mentioned boundary conditions. As we only have two unknown con-
stants in our general solution, we only get to specify two conditions to give a unique solution.
We have to distinguish between homogeneous and inhomogeneous boundary conditions: a ho-
mogeneous condition is one such that if functions u and v satisfy it, so will Cu + Dv for
constants C and D. Examples are u(a) = 0 or u′(b) = 0. Inhomogeneous conditions set a
scale, eg u(a) = 1. Initial value conditions specify u(a) and u′(a) (or similarly at b) and are
necessarily inhomogeneous (or else we will force u = 0 everywhere) while separated boundary
conditions give one condition at each of a and b and can be either homogeneous or inhomoge-
neous. Periodic boundary conditions relate u and u′ at a and b, and are homogeneous.

If we have both a homogeneous equation and homogeneous boundary conditions, there is
nothing in either to set a scale and Cu+Dv will be a solution if u and v are. However, with a
homogeneous equation we cannot in fact impose arbitrary homogeneous boundary conditions
at a and b. For example if Ly = y′′ + y, the solutions are y = A cosx + B sinx. If we want



boundary conditions y(0) = 0 and y(1) = 0, we find A = 0 from the first condition, but also
B = 0 from the second.

However there is a class of homogeneous equations that have undetermined parameters in
q, eg

y′′ + λy = 0, (1.12)

where λ, a constant, is not known. Then we can ask for what values of λ the desired boundary
conditions can be satisfied. In this case, we know the answer is λ = (nπ)2 for integer n, and
the solution is y = B sin(nπx).

In these problems we separate the term with the undetermined parameter from qy and
rewrite the equation as

p0(x)y′′(x) + p1(x)y′(x) + q0(x)y(x) = λρ(x)y(x) or Ly(x) = λρ(x)y(x). (1.13)

Written in this form it is clearly an eigenvalue equation (or a generalised eigenvalue equation if
ρ 6= 1), and we will see much more of such equations. If the homogeneous equation and given
boundary conditions does have a solution, then the corresponding eigenvalue problem has λ = 0
as an eigenvalue.

Section A.4 collects the principal equations that we will consider in this part of the course,
with notes on their physical origin and (where appropriate) parameters and eigenvalues; it
should be read now though some of the details will only be clarified subsequently.

1.2 Sturm-Liouville theory

Arfken 8.1-3

Riley 17.1-4

1.2.1 Sturm-Liouville and Hermitian operators

A particularly useful class of equations have a more restricted form of Eq. (1.3) with p1 = p′0:

− d

dx

(
p(x)y′(x)

)
+ q(x)y(x) = 0 ⇒ Ly ≡ −(py′)′ + qy (1.14)

with q(x) real, and p(x) positive for x ∈ (a, b). L is called a Sturm-Liouville operator.
Why are these interesting?
Consider, for a Sturm-Liouville operator and two functions u and v defined on x ∈ [a, b],∫ b

a

v∗(x)Lu(x) dx =

∫ b

a

−v∗(pu′)′ + v∗qu dx

=

(∫ b

a

−u∗(pv′)′ + u∗qv dx

)∗
+
[
p(uv∗′ − v∗u′)

]b
a

=

(∫ b

a

u∗(x)Lv(x) dx

)∗
+
[
p(uv∗′ − v∗u′)

]b
a
. (1.15)

where we have integrated the first term twice by parts.
Ignoring the boundary terms, this is very reminiscent of the definition of a Hermitian

operator
〈v|Ĥu〉 = 〈Ĥv|u〉 ≡ 〈u|Ĥv〉∗. (1.16)



Hermitian operators have many useful properties and we would like to prove the same for Sturm-
Liouville operators. However a Sturm-Liouville operator is only Hermitian (or self-adjoint) if
the space of functions on which it acts is restricted to those which satisfy appropriate boundary
conditions, such that the term [p(uv∗′ − v∗u′)]ba vanishes.

This can only be satisfied by homogeneous boundary conditions, either periodic where the
values of p(uv∗′ − v∗u′) at a and b are non-zero but equal and so cancel, or separated where
p(uv∗′− v∗u′) vanishes at both a and b. A regular SL equation has the form of Eq. (1.14), with
p(x) > 0 for x ∈ [a, b], and with separated homogeneous boundary conditions.2

Suitable separated boundary conditions have the general homogeneous form (applicable to
both u and v):

αau
′(a) + βau(a) = 0 and αbu

′(b) + βbu(b) = 0 (1.17)

where αa etc are finite constants and at least one of (αa, βa) and of (αb, βb) are non-zero. If p
itself vanishes at a or b we don’t need to specify a condition on u and v there, except that they
and their first derivatives should be finite; however in this case a or b (or both) is a singular
point.

These boundary conditions include the commonly-met cases of either the function or its
derivative vanishing at the boundaries, but also a fixed ratio of the function and its derivative,
that is a fixed value of the log derivative (lnu)′.

1.2.2 Sturm-Liouville eigenvalue equations

As in Eq. (1.13), we consider equations in which q(x) has an undetermined constant λ in it,
which we separate out to write

− d

dx

(
p(x)y′(x)

)
+ q(x)y(x) = λρ(x)y(x) or Ly = λρy (1.18)

with q(x) real, and p(x) and ρ(x) positive for x ∈ (a, b) (This time we don’t bother to relabel q
as q0, it will be clear from the context.) This is a Sturm-Liouville equation, and we will assume
boundary conditions such that L is Hermitian.

As already discussed, for an arbitrarily chosen λ we have a homogeneous equation and
homogeneous boundary conditions, and there will be no solution in general. So the problem
becomes that of finding both the values of λ for which solutions exist, the eigenvalues, and the
corresponding eigenfunctions.

A number of results follow directly.

Reality of eigenvalues, generalised orthogonality of eigenfunctions

If yi and yj are both eigenfunctions satisfying Lyn = λnρyn (ρ being positive), we have∫ b

a

y∗jLyi dx =

(∫ b

a

y∗iLyjdx

)∗
⇒ (λi − λ∗j)

∫ b

a

y∗jρyi dx = 0. (1.19)

2 We will use “Hermitian” and “self-adjoint” interchangeably. In the more mathematical literature, “self-
adjoint” is more restrictive: if the operator is self-adjoint then the vanishing of the boundary term [...]ba requires
both u and v to satisfy the boundary conditions. For a regular Sturm-Liouville operator, with separated
homogeneous boundary conditions and p > 0, this will obviously be true, since eg u(a) = u(b) = 0 is not sufficient
without v(a) = v(b) = 0 also. The properties of the spectrum of eigenvalues and form of the corresponding
eigenvectors that we describe later require self-adjointness. In the physics literature the distinction is rarely
made, and the current editions of both Riley and Arfken use “Hermitian”. Somewhat confusingly, they use
“self-adjoint” for the property of the operator where I have used “Sturm-Liouville”, with Hermiticity requiring
appropriate boundary conditions on u and v in addition.



If we set i = j, the integral is positive definite so we have λi−λ∗i = 0, ie the eigenvalues of L are
real. Conversely if they belong to different eigenvalues, we need the integral to vanish. So the
eigenfunctions belonging to different eigenvalues satisfy a generalised orthogonality condition∫ b

a

y∗j (x)ρ(x)yi(x) dx = 0 for λi 6= λj. (1.20)

(Note we will often refer to this simply as “orthogonality”, the “generalised” being implied if
ρ 6= 1.)

Reality of eigenfunctions

Although up to now we have allowed for the eigenfunctions to be complex, we now see that we
can choose them to be real. Recall the functions p, q and ρ are real, so if yi = ui + ivi, ui and
vi both being real, then ui and vi must separately be real eigenfunctions of L with the same
eigenvalue. If this eigenvalue is non-degenerate, this means ui and vi are just multiples of the
same function, and yi = Cui, C being a constant; we can then take the (real) ui in place of
yi as the eigenfunction for this eigenvalue. If there is degeneracy, ie a second eigenfunction for
the same eigenvalue ỹi = ũi + iṽi, then ũi and ṽi are solutions as well, but only two of ui, vi, ũi
and ṽi are linearly independent (see next subsection) and we can chose an orthogonal pair to
be our two real eigenfunctions for this eigenvalue.

Degeneracy of eigenfunctions

We can easily show that a regular SL problem has only one independent solution for a given
eigenvalue λ, while periodic boundary conditions allow for two.

Suppose that y1 and y2 are (real) solutions corresponding to the same λ. We write L̃ =
L− ρλ, and note that as λ and ρ are real, L̃ is also Hermitian, so we can treat this as a simple
homogeneous equation: L̃y = 0.

First, we note that the expression that enters the boundary term in (1.15) can be written
in terms of the Wronskian, p(y1y2

′− y2y′1) = pW [y1, y2], and so with separated bcs and positive
p, Hermiticity requires that W (a) = W (b) = 0.

Now comparing the SL equation (1.14) with the form of Eq. (1.5), the function we called P
corresponds to p′/p, and so from Eq. (1.8) the Wronskian of two independent solutions is given
by

W [yi(x), y2(x)] ∝ exp

(
−
∫ x p′(x′)

p(x′)
dx′
)

=
W0

p(x)
(1.21)

where W0 is a constant. But p(x) > 0, so the vanishing of W at the boundaries requires W0 = 0.
Hence W (x) = 0 for all x ∈ [a, b]. So a regular SL equation with a given eigenvalue λ cannot
have two independent solutions. (Recall the problem above, (1.12), where only the sin(nπx)
solution survived after the bcs were imposed.)

This assumes separated boundary conditions; the other possibility for Hermiticity is that
W (b)p(b) and W (a)p(a) cancel, so W (a) need not vanish. This is exactly what we get from
Eq. (1.21): if two solutions do exist their Wronskian satisfies W (x)p(x) = const. The periodic
boundary conditions y(a) = y(b) and p(a)y′(a) = p(b)y′(b) are consistent with this and thus
two solutions can indeed exist (cf cos(nπx) and sin(nπx)). These two solutions can be chosen
to be orthogonal to one another, so in fact we can arrange that all eigenfunctions, not just
those corresponding to different eigenvalues, are orthogonal and we can replace the condition
in (1.20) with “i 6= j”.



Eigenfunctions as a basis; classification of eigenfunctions by the number of nodes

For Hermitian operators in a finite N -dimensional space, N orthogonal eigenvectors automati-
cally form a basis, and any vector in the space can be expressed as a sum over the eigenvectors.
For an infinite-dimensional function space this is not obvious, but it is true. We will prove
it in the final section of the course if time permits. For the particular case Ly ≡ −y′′, the
eigenfunctions are sines and/or cosines (depending on the boundary conditions) and the fact
that they form a basis leads to Fourier analysis. As another example, Legendre polynomials
form a complete set on the interval [−1, 1] with the boundary condition (py′)(±1) = 0, where
p = (1− x2), which in practice just requires “well-behaved” (finite) functions.3 The expansion

of a function f(x) in a complete set of orthonormal functions {φi(x)} obeying
∫ b
a
φ∗jρφidx = δij

is

f(x) =
∞∑
i=1

fiφi(x) where fi =

∫ b

a

φ∗i (x)ρ(x)f(x) dx. (1.22)

Convergence of the series is taken to be convergence “in the mean”, which implies that

lim
n→∞

∫ b

a

∣∣∣∣∣f(x)−
n∑
i=1

fiφi(x)

∣∣∣∣∣
2

ρ(x)dx = 0 (1.23)

and which is still satisfied if there are a finite number of discontinuities, though the “Gibbs
phenomenon” (a failure to reproduce the function in the immediate vicinity of the discontinuity)
occurs.

Completeness of a set of orthonormal vectors {|n〉} in N dimensions can be written

N∑
n=1

|n〉〈n| = Î; (1.24)

the equivalent in functional form is

δ(x− x′) =
∞∑
i=1

φi(x)φ∗i (x
′)ρ(x′). (1.25)

This can be verified by multiplying both sides of (1.25) by f(x′) and integrating wrt x′ to
get

∑∞
i=1 fiφi(x) = f(x).

In the above the numbering φ1, φ2 . . . is arbitrary. But in fact sets of eigenfunctions of a
regular SL operator have a natural ordering, because the eigenfunctions can be classified by
the number of nodes (excluding any at a and b). This isn’t completely obvious, and will not
be proved in full. But it can be shown that if we have a pair of eigenvalues λ and µ with
corresponding solutions yλ and yµ, and if λ > µ, then yλ has at least one zero between each
pair of zeros of yµ, and also between each end-point and the nearest (first or last) zero of
yµ, and hence has more zeros than yµ. This shows that the eigenvalues are not continuous
(an infinitesimal change in λ can’t change the function to the point where develops a new
node4) but have a discrete spectrum. We can therefore list the eigenvalues in ascending order

3For analytic functions there is a unique Taylor-Laurent series about x = 0 which can be re-expressed as a
sum over Legendre polynomials, which establishes completeness in that particular case.

4The exception would be if the function had a local minimum which dropped through zero to created two
new nodes at once, but for analytic p and q it is easy to show that it is not possible for y and y′ to vanish at
the same point. Otherwise all higher derivatives would vanish and the function itself would be zero for all x.



λ1 < λ2 < λ3 . . . starting with the eigenvalue λ1 for which the eigenfunction has the fewest
nodes, and each subsequent eigenfunction has more nodes than the one before. In fact the
number of interior nodes of yn is exactly n−1, and the eigenfunctions are oscillatory in nature.
(This is why we chose to write Ly = −(py′)′ + qy with p > 0; had we not included the initial
minus sign the eigenvalues would have formed a descending set). The sine or cosine solutions
we obtain from −y′′ = λy are in fact a very good picture of the solutions for the complicated
case, except that in general the nodes are not perfectly evenly spaced.

1.2.3 Application to quantum mechanics and casting equations in
Sturm-Liouville form

The properties above (real eigenvalues, discrete spectrum with a lowest or “ground state”
eigenvalue, oscillatory solutions with an extra node each time we go up a level) are exactly
those that we have frequently met before in quantum-mechanical problems. In one-dimension
the Schrödinger equation is clearly an example of an SL equation (where p(x) = ~2/2m =const
and q(x) = V (x)) and the boundary conditions we impose are always homogeneous to preserve
the important principle of superposition. However when we separate the Schrödinger equation
in plane or spherical polar coordiates we obtain radial equations which are not SL in form, for
instance in a 2D infinite square well, for solutions with angular dependence einφ, we obtain the
radial equation

r2R′′(r) + rR′(r) + (k2r2 − n2)R(r) = 0 with k =
√

2mE/~ and R(a) = 0. (1.26)

Comparing with the general form of Eq. (1.13), we have p0 = r2, q0 = −n2 and p1 = r 6= p′0.
(Note n2 is just a parameter in the radial equation, related to the angular momentum.) This
is a (generalised) eigenvalue problem with λ = k2, but it is not of SL form.5 Can we salvage
anything?

The answer is yes. Any 2nd-order linear differential operator such as the LHS of Eq. (1.13)
can be cast in SL form by multiplying throughout by an integrating factor w(x), chosen so that
wp1 = (wp0)

′. This gives

w′ = w

(
p1
p0
− p′0
p0

)
⇒ w(x) =

1

p0(x)
exp

(∫ x p1(x
′)

p0(x′)
dx′
)
. (1.27)

In this case p1/p0 = 1/r and w(r) = 1/r, giving a new equation with the same eigenvalues and
eigenfunctions as before, but now in manifestly SL form:

− (rR′)′ +
n2

r
R = k2rR. (1.28)

The point r = 0 is a regular singular point. The boundary condition is R(a) = 0; because
p(0) = 0 the condition at the origin is just that R(0) is finite.

This transformation lets us see that all the desirable properties of an SL equation still hold.
The only thing to note is that there is a weight function ρ = r in the orthogonality relation.
Of course, this is exactly what we expect from the physical problem, with the element of area
being dS = 2πr dr. (The corresponding 3D problem has r2 as the weight function.) If the

nodes of the nth Bessel function are z
(n)
i , the solutions are Jn(kir), where ki = z

(n)
i /a.

5Setting z = kr allows us to write this as Bessel’s equation, with solution R(r) = Jn(kr), which is very useful
except that it no longer looks like an eigenvalue equation.



Another examples of an equation that occurs in QM is Hermite’s:

y′′(z)− 2zy′(z) + 2ny(z) = 0. (1.29)

Again it is not in SL form. The integrating factor w(z), and hence the weight factor ρ(z), is
e−z

2
. For the 1D Schrödinger equation with a quadratic potential, if the full wave function

is expressed as a polynomial times the function e−z
2/2 which gives the right long-distance be-

haviour (in suitably-scaled coordinates),6 some manipulation yields the Hermite equation for
the polynomials. Hence the weight factor e−z

2
in the orthogonality relation for the polyno-

mials means that the full wave functions do obey the expected orthogonality conditions. See
PHYS30201 A.4 for more details.

In the general case we need to check that the new weight function is finite and positive on
x ∈ (a, b).

In the background section of these notes, you will find a list of many of the second-order
ODEs that you have met, including all that we will be assuming familiarity with in the next
sections, so if you haven’t already, you should read section A.4 now. Most of them are not in
SL form as presented there, but as we have just seen, that is easily remedied. For the ones that
are eigen equations, you should now have a better understanding of the general properties of
their eigenvalues and eigenfunctions.

6For the quadratic potential V = 1
2mω

2x2 the scaling is the usual z = x/x0 with x0 =
√

~/mω and
E = (n+ 1

2 )~ω. The boundary conditions require n to be an integer.

https://theory.physics.manchester.ac.uk/~judith/Quantum/PHYS30201.pdf#nameddest=sect:hermite


1.3 Generating functions

Arfken 12.1,14.1, 15.1,15.3

Riley 18.1,18.5

1.3.1 Legendre polynomials

Consider the problem in electrostatics of finding the potential at a point r near the origin of a
charge placed on the z-axis at r0 = r0ez. We know the answer of course:

Φ(r) ∝ 1

|r− r0|
=

1√
r2 + r20 − 2rr0 cos θ

. (1.30)

However we also know that the electric potential must satisfy the Laplace equation ∇2Φ(r) = 0
except at r = r0, and that the general axially-symmetric solution is

Φ(r, θ) ∝
∑
l

(
Al r

l +
Bl

rl+1

)
Pl(cos θ) (1.31)

(omitting the same constants as in (1.30)). Now it will not be possible to find a single solution
of this form valid everywhere: Φ has to be finite both at r = 0 and at r → ∞, and only
Al = Bl = 0 would allow that. But we are familiar with the idea that a series expansion may
have a restricted radius of convergence. In this case, the expression in Eq. (1.30), for any fixed
cos θ, can be expanded as a Taylor series about the the origin, involving only positive powers
of r, but that series will have radius of convergence r0—the distance to the position of the
charge.7 For r > r0 we would need a Laurent series, in this case involving only negative powers
of r, instead.

So we have (working in units where r0 = 1 for simplicity)

1√
1 + r2 − 2r cos θ

=
∞∑
l=0

Al r
l Pl(cos θ) for |r| < 1.

It remains to find the constants Al which we do by considering the expression for cos θ = 1,
recalling that with the conventional normalisation Pl(1) = 1. Since (1− r)−1 = 1 + r+ r2 + . . .
for |r| < 1, we see that Al = 1 for all l: So we have

1√
1 + r2 − 2r cos θ

=
∞∑
l=0

rl Pl(cos θ) for |r| < 1.

This expression is called the generating function g(cos θ, r) for the Legendre polynomials: Usu-
ally the two variable are relabelled, r → t and cos θ → x: then

g(x, t) =
1√

1 + t2 − 2xt
=
∞∑
n=0

tn Pn(x) for |t| < 1. (1.32)

By constructing the Taylor series in t for the LHS we can read off expressions for the Pl.
Formally,8

Pn(x) =
1

n!

dn

dtn
g(x, t)

∣∣∣∣
t=0

, (1.33)

7Mathematically, Eq. (1.30), regarded as a function of complex r at fixed real cos θ, has non-analytic points
at r = e±iθ; for θ = 0, π these merge to give a simple pole at r = ±1, otherwise there are two branch points.

8We will meet generating functions for other special functions below; note that the normalisation may vary
so that, for instance, for Hermite polynomials the n! is missing from the analogue of (1.33).



but below we will use the known expansion of a binomial series (1 + z)n as a shortcut:

g(x, t) =(1− (2tx− t2))−
1
2 = 1 + 1

2
(2tx− t2) + 3

8
(2tx− t2)2 + 5

16
(2tx− t2)3 + 35

128
(2tx− t2)4 + . . .

=1 + 1
2
(2tx− t2) + 3

8
(4t2x2 − 4xt3 + t4) + 5

16
(8t3x3 − 12t4x2 + . . .) + 35

128
(16t4x4 + . . .) + . . .

=1t0 + xt+
(
3
2
x2 − 1

2

)
t2 +

(
5
2
x3 − 3

2
x
)
t3 +

(
35
8
x4 − 15

4
x2 + 3

8

)
t4 + . . .

where in the last two lines we have dropped all terms of order t5 or higher. From this we can
read off the first five Legendre polynomials, eg P4(x) =

(
35
8
x4 − 15

4
x2 + 3

8

)
.

This provides one way of obtaining the polynomials, but it is more useful for obtaining what
are called recurrence relations which relate polynomials of different orders. If for instance we
differentiate g(x, t) with respect to t we get

∂g

∂t
=

x− t
(1− 2tx+ t2)3/2

=
x− t

1− 2tx+ t2
g(x, t)

⇒
∞∑
n=0

n tn−1 Pn(x) =
x− t

1− 2tx+ t2

∞∑
n=0

tn Pn(x)

⇒
∞∑
n=0

(
n(tn−1 − 2xtn + tn+1) + (tn+1 − xtn)

)
Pn(x) = 0

⇒
∞∑
n=0

ntn−1 Pn(x)−
∞∑
n=0

(2n+ 1)tnxPn(x) +
∞∑
n=0

(n+ 1)tn+1 Pn(x) = 0.

By shifting the summation variable n → n± 1 in the first and last terms, and regrouping, we
get

∞∑
n=0

(
(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x)

)
tn = 0. (1.34)

By collecting powers of t, we get from t0, P1(x) = xP0(x), which we know to be correct, and
from tn for n ≥ 1, the three-term recurrence relation

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (1.35)

which we can easily check holds for n = 1, 2, 3 from the forms we deduced above.
Differentiating with respect to x gives another type of relation, one involving the derivatives

of the polynomials. By a method similar to the above, we get

∞∑
n=0

tnP ′n(x) =
t

1− 2tx+ t2

∞∑
n=0

tn Pn(x)

⇒
∞∑
n=0

(tn − 2tn+1x+ tn+2)P ′n(x)− tn+1 Pn(x) = 0

⇒ P ′n−1(x)− 2xP ′n(x) + P ′n+1(x) = Pn(x) for n > 0, (1.36)

or combining with the derivative of Eq. (1.35), we also get (among other relations)

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x) (1.37)

xP ′n(x)− P ′n−1(x) = nPn(x) (1.38)

xP ′n(x)− P ′n+1(x) = −(n+ 1)Pn(x) (1.39)

(1− x2)P ′n(x) = nPn−1(x)− nxPn(x). (1.40)



In addition differentiating (1.40) and combining with n times (1.38) gives Legendre’s equation

(1− x2)P ′′n (x)− 2xP ′n(x) + n(n+ 1)Pn(x) = 0 (1.41)

which is a further check on the approach. Some textbook define the Legendre polynomials via
the generating function and derive the equation that they satisfy; we have used the opposite
approach as more physically motivated. Legendre polynomials arise in many problems where
the equations have spherical symmetry and the solutions are axially symmetric about the z-
axis; further solutions which break the axial symmetry involve associated Legendre polynomials
(spherical harmonics). If the boundaries are such that poles (cos θ = ±1) are not in the domain,
the second solutions Qn(cos θ) will enter as well; we found Q1(x) above (see Eq. (1.11)) and we
will discuss these further in section 1.4.1.

1.3.2 Bessel functions of integer order

For Bessel functions, (solutions to Eq. (1.26)) we use a similar approach. In the 2-d x-y plane,
one solution to the wave equation is the plane wave ei(ky−ωt), with ω/c = k. However we can
equate that to the form we obtain if we separate first in time and space and then in plane polar
coordinates to give the general solution to the wave equation, in a region containing the origin,
as follows:

ei(ky−ωt) =

(
A0J0(kr) +

∞∑
n=1

(
Aneinφ +Bne−inφ

)
Jn(kr)

)
e−iωt (1.42)

where the sum is over integer n. Dividing out e−iωt, substituting y = r sinφ = r(eiφ−e−iφ)/(2i)
in the plane wave, setting eiφ = t and kr = z, and equating the two forms gives

exp
(
z
2
(t− 1

t
)
)

= A0J0(z) +
∞∑
n=1

(
Ant

n +Bnt
−n)Jn(z). (1.43)

Symmetry under t → −1/t means that Bn = (−1)nAn, and the value at z = 0 sets A0 = 1 if
J0(0) = 1, as is conventional (all the other Jn vanish at the origin). This time, the conventional
normalisation of all the Bessel functions is defined such that An = 1 for all n, and hence we
have the generating function g(z, t) obeying

g(z, t) = exp
(
z
2
(t− 1

t
)
)

= J0(z) +
∞∑
n=1

(tn + (−1)nt−n)Jn(z) =
∞∑

n=−∞

tnJn(z). (1.44)

Recall that Bessel’s equation only depends on n2 so we are free to define J−n(z) = (−1)nJn(z),
which then allows us to rewrite the sum as in the second form above.

Bessel functions are not terminating polynomials, but we can obtain a Taylor series expan-
sion of the solution directly from Eq. (1.44). For instance taking the Taylor expansion in z of
the LHS and gathering terms independent of t gives

J0(z) =
∞∑

j=0,2...

(−1)j/2zj

((j/2)!)22j
=

∞∑
m=0,1...

(−1)m

(m!)2

(z
2

)2m
(1.45)

which is even in z and has vanishing derivative at the origin; this series has an infinite radius
of convergence.



Differentiating wrt z or t gives the useful recurrence relations

Jn−1(z)− Jn+1(z) = 2J ′n(z) and Jn+1(z) + Jn−1(z) =
2n

z
Jn(z). (1.46)

The first of these gives J1(z) = −J ′0(z), which tells us that J1(z) is odd and linear about the
origin. In general the first term in the expansion of Jn is proportional to zn, and is odd (even)
for odd (even) n.

As with the Legendre case, these recurrence relations can be manipulated till they take the
form of Bessel’s equation. This obvious fact is of more relevance in this case, because in the
next section we will see that Bessel functions of non-integer order are also of interest; this shows
that they also obey the recurrence relations.

1.3.3 Hermite polynomials

Here we state without proof a generating function for Hermite polynomials:

g(x, t) = e−t
2+2tx =

∞∑
n=0

Hn(x)
tn

n!
. (1.47)

1.3.4 Rodrigues’ Formula

Rodrigues’ Formula gives different form of generating function for a restricted class of equations
of the form (see Eq. (1.13))

p0(x)y′′(x) + p1(x)y′(x) = −λy(x) (1.48)

where the pi are polynomial, p0 being at most quadratic and p1, linear in x. In that case the
integrating function w(x) defined in Eq. (1.27) will be calculable. Then it can be shown that
the nth regular eigenfunction is given by

yn ∝
1

w(x)

(
d

dx

)n (
w(x)

(
p0(x)

)n)
(1.49)

(where we have used “∝” rather than “=” as a multiplicative constant may be needed to get the
conventional normalisation). So for example for Hermite’s equation (1.29), p0 = 1, p1 = −2x,
w = e−x

2
and

Hn(x) = (−1)nex
2
( d

dx

)n
e−x

2

(1.50)

and for Legendre’s equation (1.41) (with conventional normalisation)

Pn(x) =
(−1)n

2nn!

( d

dx

)n
(1− x2)n (1.51)

The general proof of Rodrigues’ formula is given in Arfken 12.1 and (for specific cases) Riley
18.1, 18.9, and will not be given here though it is not too complicated.

Such equations (Laguerre’s is another) have terminating polynomial solutions. Bessel’s
function is not of this form, though it might initially appear so at least for n = 0, as when the
weight function x2 is divided out, p0 = 1 and p1 = 1/x.



1.4 Series solutions to differential equations

Arfken 8.3, 14.1, 14.3, 15.6

Riley 16

Series solutions to differential equations were introduced in PHYS20171 Maths of Waves
and Fields. This section is mostly revision, but we comment on the results in the light of
our previous work. In particular we find that we need to use a different method if we are
expanding about a regular singular point, and that other singular points will restrict the radius
of convergence of the series. Note that we start without imposing boundary conditions and
hence expect to find two solutions for each equation.

1.4.1 Series solutions about ordinary points

Given a differential equation we can expand the solution about an ordinary point of the equation
x = x0 as a Taylor series which will in general have a radius of convergence governed by the
distance to the nearest singular point. For example for the classical equation of SHM,

− y′′(x) = y, (1.52)

expanding about the origin we write

y(x) =
∞∑
n=0

anx
n, (1.53)

and plugging this into the differential equation and equating powers of x gives, for n ≥ 2,

an = − 1

n(n− 1)
an−2 ⇒

{
an = (−1)n/2

n!
a0 n even,

an = (−1)(n−1)/2

n!
a1 n odd.

(1.54)

Hence y(x) = a0 cosx+ a1 sinx as expected. The ratio test shows that as∣∣∣∣an+2x
n+2

anxn

∣∣∣∣ =

∣∣∣∣ x2

(n+ 1)(n+ 2)

∣∣∣∣ (1.55)

for any given finite x, the ratio of successive terms tends to zero as n → ∞ and the series
converges. This illustrates useful points that are often met: until we specify boundary condi-
tions there are two independent solutions. As the equation is symmetric under x → −x, the
solutions are either odd or even and the recurrence relation is a two-term relation between odd
or even terms only. There are no singular points except |x| =∞ so we can expand about any
point (here we used the origin) and the radius of convergence is infinite, that is a single series
solution is valid everywhere.

For Legendre’s equation

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 (1.56)

(where to begin with we should not assume anything about l) the recurrence relation for an
expansion about the origin (an ordinary point) is

an+2 = − l(l + 1)− n(n+ 1)

(n+ 1)(n+ 2)
an, (1.57)
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Figure 1.1: Regular (Left) and irregular (right) solutions of Legendre’s equation for integer
l = 0− 6

This time the ratio of successive terms tends to x2 as n → ∞, so it converges for |x| < 1
and diverges for |x| > 1. Since the equation has regular singular points at x = ±1 this is as
expected. However the ratio test does not tell what happens to the solution at those points;
for that we need Gauss’s test9 which looks at sub-leading terms in the ratio as a function of
n. We need to be careful with the meaning of n when the series has missing terms, so let us
instead consider

∑
j=0 bj(x

2)j with n = 2j and bj = a2j:

bj
bj+1

=
(2j + 1)(2j + 2)

2j(2j + 1)− l(l + 1)
−→
j→∞

1 +
1

j
+ O

(
1

j2

)
(1.58)

Since the coefficient of 1/j, 1, is not greater than 1, the series diverges at |x| = 1. (We get the
same result if we let n = 2j + 1 for the odd series.)

We know the way out: for integer even (odd) l the even (odd) series will have al+2 = 0
and the series terminates. The resulting finite polynomial Pl(x) converges for all finite x.
The odd (even) series, Ql(x), does not terminate and only converges for |x| < 1; boundary
conditions requiring well-behaved solutions at x = ±1 then excludes this second solution. In a
familiar pattern, therefore, requiring solutions with certain boundary conditions quantises the
eigenvalues—in this case, this corresponds to the quantisation of orbital angular momentum.
The full solution in a region excluding |x| = 1 is

y(x) = a0Pl(x) + a1Ql(x) for l = 0, 2, 4 . . ., y(x) = a0Ql(x) + a1Pl(x) for l = 1, 3, 5 . . .
(1.59)

Of course we saw near the start of this section that we can always construct a second solution
given one solution. We constructed Q1(x) (Eq. (1.11)), which can be shown to have the Taylor
expansion

Q1(x) = −1 +
∑

n=2,4...

xn

(n− 1)
(1.60)

in accordance with the recurrence relation (1.57).
On a domain x ∈ [a, b] with |a|, |b| < 1, with separable homogeneous boundary conditions,

Legendre’s equation is a regular SL problem with eigenvalue λ which it is not particularly useful
to write as l(l+ 1). We know therefore that the spectrum will be non-degenerate (the solutions

9see Arfken, example 1.1.7 and text above



will can be written as superpositions of Pl and Ql for non-integer l), there will be a lowest
eigenvalue corresponding to a solution with no nodes, and higher eigenvalues correspond to
more and more nodes, without bound. If |a| or |b| = 1 the problem is no longer regular (p(±1)
is not finite and ±1 are regular singular points) but the same properties persist.

Hermite’s equation presents nothing fundamentally new; the origin is an ordinary point
and the series solution converges for all finite x; however the function grows as ex

2/2 for x→∞,
a problem which is solved if the eigenparameter n is an even or odd integer, in which case the
even or odd series terminates. See PHYS30201 A.4 for more details.

1.4.2 Frobenius’s method and Bessel functions

Bessel’s equation
x2y′′ + xy′ + (x2 − n2)y = 0 (1.61)

is more interesting, because the origin is a regular singular point and one might expect problems.
Note we write the parameter as n2 and will not necessarily assume integer n, but we will take
it non-negative. If n is known to be non-integer, we write it as ν.10

For this case we will use the more general form of a series solution due to Frobenius 11, and
write

y(x) = xs
∑
j=0

ajx
j (1.62)

where s is the lowest power of x in the expansion and its coefficient a0 is by definition non zero.
(Note a0 is no longer necessarily the coefficient of x0, which can cause confusion.) This allows
for a pole or branch point at x = 0 if s < 0, but also for a solution that starts with x or a
higher power of x. Substituting (1.62) in (1.61) gives∑

j=0

(
(j + s)(j + s− 1) + (j + s)− n2

)
ajx

j+s +
∑
j=0

ajx
j+s+2 = 0

⇒ (s2 − n2)a0x
s + ((s+ 1)2 − n2)a1x

s+1 +
∑
j=2

((
(j + s)2 − n2

)
aj + aj−2

)
xj+s = 0

The recurrence relation is

aj =
1

n2 − (j + s)2
aj−2 for j ≥ 2, (1.63)

but in addition we need the first two terms to vanish. The first gives

s2 − n2 = 0 (1.64)

which is called the indicial equation, and requires s = ±n. (Recall that a0 6= 0 by definition: xs

is the lowest power in the series.) In general the vanishing of the second term requires a1 = 0,12

10It should be noted that while Bessel’s equation looks like an eigenvalue equation with λ = −ν2, this is not
how it arises in physics; rather ν is an externally-imposed parameter related to the single-valued, finite angular
part of the solution (for instance in 2D ν = m, an integer, or as we will see, in 3D ν = l+ 1

2 , hence half integer).
It becomes an eigenvalue problem in k when the substitution x = kr is made, exactly as the homogeneous ODE
y′′ = −y becomes the eigenvalue equation y′′ = −k2y under a similar substitution. See Eq. (A.18).

11See the end of this section for a comment on what happens if we use this more general form when the
simpler one of the previous section would have worked.

12 If n = ± 1
2 and s = − 1

2 , a1 6= 0 is allowed though not required, otherwise we need a1 = 0. For s = − 1
2 , the

series built on a1 will start with x
1
2 . However if s = − 1

2 is one possibility, so is s = 1
2 and this already gives a

series starting at x
1
2 ; we don’t get anything new. So even here we can set a1 to zero.

https://theory.physics.manchester.ac.uk/~judith/Quantum/PHYS30201.pdf#nameddest=sect:hermite
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Figure 1.2: Regular (left) and irregular (right) solutions of Bessel’s equation for integer n = 0−5

and we obtain the two solutions (if they exist) from the two values of s. Unless s = n = 0, one
of these by definition will be divergent at the origin, the other will start with the power xn—as
indeed we already found to be true for integer n.

Starting with the case n = 0, s = 0, (1.63) is simply aj = − 1
j2
aj−2. Setting a0 = 1,

J0(x) =
∑

j=0,2...

(−1)j/2

(j!!)2
xj (1.65)

where j!! = j(j − 2)(j − 4) . . . = 2j/2(j/2)! for even j. This is the same as we found before, see
Eq. (1.45). But there is no other series solution!

For other integer n > 0, if we take s = n the solution will be of the form xnf(x2), f(0)
being finite, which will be odd or even as n is odd or even, and with aj = −aj−2/j(j + 2n) for
j ≥ 2,

Jn(x) =
∑

m=0,1...

(−1)m

m!(m+ n)!

(x
2

)n+2m

(1.66)

where the normalisation matches that obtained from the generating function. Now if we take
s = −n, the other solution of the indicial equation, we might expect to get a second solution,
albeit one that is not regular at the origin. However the recurrence relation is aj = −aj−2/j(j−
2n) which fails when j = 2n. So again we do not get a second series solution.

Of course a second solution must exist, and is denoted Yn(x) or Nn(x), but its behaviour at
the origin must not be describable by a power series, even one with negative powers. log x is
such a function (though not one of the solutions itself).

Note that we assumed positive n and found a solution for s = n; if we assume negative n
we have a solution for (positive) s = −n. As the equation only depends on n2 the two cases
are not independent. Recall above we chose to define J−n(z) = (−1)nJn(z) for integer n.

Moving on to non-integer n = ν, with ν > 0, we can in fact reuse much of the analysis
above. We have to define Γ(α) which has the value (α − 1)! for integer α > 0, and which for
any integer N satisfies

Γ(α) = (α− 1)(α− 2)(α− 3) . . . (α−N)Γ(α−N) (1.67)

For s = ν, and using conventional normalisation in the second step,

Jν(x) = Aνx
ν
∑

m=0,1...

(−1)mΓ(ν + 1)

22mm!Γ(m+ ν + 1)
x2m =

∑
m=0,1...

(−1)m

m!Γ(m+ ν + 1)

(x
2

)ν+2m

. (1.68)



Replacing ν → −ν gives J−ν which is an independent solution, albeit one which is not regular
at the origin.

All of the series given above clearly converge for all x > 0.
For non-integer ν it is actually conventional to define the second solution via

Nν =
cos(νπ)Jν − J−ν

sin(νπ)
(1.69)

which clearly forms a linearly-independent pair with Jν since it contains J−ν . For integer ν = n
both the numerator and denominator vanish (recall J−n = (−1)nJn) but the expression can
be evaluated using l’Hôpital’s rule (in ν) and used to define Nn as well. As expected it is
(logarithmically) divergent at the origin.

Finally for n = ν = 1
2
, we note that for integer m,

m!Γ(m+ 1 + 1
2
) = m!Γ(1

2
)1
2
· 3
2
· 5
2
. . . 2m+1

2

= (2m)!!(2m+ 1)!!2−(2m+1)Γ(1
2
) = (2m+ 1)!2−(2m+1)Γ(1

2
)

so

J 1
2
(x) =

2
1
2

Γ(1
2
)x

1
2

∑
m=0,1...

(−1)m

(2m+ 1)!
x2m+1 ∝ sinx√

x
. (1.70)

and J− 1
2
(x) ∝ cosx/

√
x.

Bessel functions of half-integer order turn out to be useful for the solution of the wave
equation in spherical polar coordinates. The radial wave function satisfies

r2R′′(r) + 2rR′(r) + (k2r2 − l(l + 1))R(r) = 0, (1.71)

and with the substitution R(r) = u(r)/r, for l = 0, we obtain u(r) = A cos(kr) + B sin(kr).
However the alternative substitution R(r) = u(kr)/

√
kr transforms the equation into Bessel’s

equation with ν = l + 1
2
. For l = 0 that gives the same as the simpler substitution, but we

also now have a way of finding solutions for higher l. These occur enough that they are called
spherical Bessel functions and given special symbols:

jl(x) =

√
π

2x
J
l+

1
2
(x), nl(x) =

√
π

2x
J
−l−1

2
(x). (1.72)

A final comment on Frobenius’s method: if we use if when we don’t need to, that is for an
expansion about an ordinary point, we will find that the indicial equation has solutions s = 0
and s = 1. If, further, the equation has symmetry under x → −x, such that we expect odd
or even solutions, the solution we obtain for s = 1 will be the same as the one built on a1 for
s = 0.



1.5 Transform methods

1.5.1 Fourier Transforms: differential equations defined on an infi-
nite interval

Arfken 20.2-4

Riley 13.1

Background A.9

Frequently met boundary conditions are that the solution to a differential equation be
square integrable, vanishing at x = ±∞. Assuming suitable conditions on its continuity, such
a solution y(x) will have a Fourier transform ỹ(k) defined as

ỹ(k) =

∫ ∞
−∞

e−ikxy(x)dx, (1.73)

with the inverse being given by

y(x) =
1

2π

∫ ∞
−∞

eikxỹ(k)dk, (1.74)

Contrary to usage in, for instance, QM, it proves more useful to distribute the factor of 2π
asymmetrically in this course.

Now the Fourier transform of the derivative of y(x) has a simple form:

F.T.[y′] =

∫ ∞
−∞

e−ikx
dy

dx
dx = −

∫ ∞
−∞

(
d

dx
e−ikx

)
y(x)dx = ikỹ(k) (1.75)

and similarly the FT of the second derivative is −k2ỹ(k). Thus a differential equation with
(positive) constant coefficients can be turned into an algebraic equation for ỹ(k). So

y′′ + 2ay′ + by = f(x) ⇒ ỹ(k) =
f̃(k)

b+ 2ika− k2
(1.76)

The issue of course is to find the inverse transform:

y(x) =
1

2π

∫ ∞
−∞

eikx
f̃(k)

b+ 2ika− k2
dk (1.77)

There will be particular functions f̃(k) for which we can actually do the integral. More gen-
erally though, we recall the convolution theorem, that the FT or inverse FT of a product is a
convolution. The IFT of f̃(k) is of course f(x); let us define the other IFT as

G(x) =
1

2π

∫ ∞
−∞

eikx
1

b+ 2ika− k2
dk (1.78)

so

y(x) =

∫ ∞
−∞

G(x− z)f(z) dz. (1.79)

The calculation of G(x) may be often done using methods from complex variables, by
considering an integral in the complex k plane over a semi-circular contour of radius R, such
that the desired integral is the limit as R → ∞ of the straight section. (See A.7, contour A.)



We invoke Jordan’s lemma to say that if x > 0, the contribution from a semicircle in the upper
half plane will tend to 0 as R → ∞. Thus the desired real integral can be equated to the full
contour integral, which is evaluated from the residues of the enclosed poles. For x < 0 the
contour must instead be closed in the lower half plane. Here the poles are at ia±

√
b− a2 and

assuming b > a2 these are both in the upper half plane; the result is

G(x) = Θ(x)e−ax
sin
(√

b− a2x
)

√
b− a2

(1.80)

Recall Θ(x− x0) is a unit step function at x0 and its inclusion here ensures that G(x) vanishes
for x < 0. This is continuous and falls off exponentially as x → ∞, so any reasonable driving
term f(x) will give a well defined solution, which we can rewrite as

y(x) =

∫ x

−∞
G(x− z)f(z) dz. (1.81)

Even if the integral cannot be done analytically, it can be done numerically. This is a general
method of finding the particular integral. The complementary function is absent, because in
this case it contains e−ax and so is not finite at x→ −∞.

While we have used x as the variable here, the interpretation is simpler if we think of time; in
particular if we replace a→ γ/2 and b→ ω2

0, we see the problem is the classical underdamped
harmonic oscillator with a driving term. Let’s pursue this a little further. First we note that,
conventionally, we swap the signs in the Fourier transform and inverse transform if the variables
are t and ω compared with x and k, so

G(t) =
1

2π

∫ ∞
−∞

e−iωt
1

ω2
0 − iγω − ω2

dω = Θ(t)e−
1
2
γt

sin
(√

ω2
0 − 1

4
γ2 t

)√
ω2
0 − 1

4
γ2

. (1.82)

with, for a source f(t),

y(t) =

∫ t

−∞
G(t− t′)f(t′) dt′. (1.83)

Note that this solution incorporates causality : only the behaviour of the source at times t′ < t
influences the solution at t.

Consider the very simple case of an oscillatory driving term, f(t) = f0 e−iωdt. Writing

ωr =
√
ω2
0 − 1

4
γ2, we have

y(t) = f0

∫ t

−∞
e−

1
2
γ(t−t′) eiωr(t−t′) − e−iωr(t−t′)

2iωr
e−iωdt

′
dt′

=
f0
ωr

[
e−

1
2
γ(t−t′)+iωr(t−t′)−iωdt

′

1
2
γ − iωr − iωd

− e−
1
2
γ(t−t′)−iωr(t−t′)−iωdt

′

1
2
γ + iωr − iωd

]t
−∞

=
f0e
−iωdt

ω2
0 − ω2

d − iγωd
(1.84)

This is exactly what we would have obtained in first year, with the amplitude having the
familiar Lorentzian form with a peak where the driving and undamped natural frequencies
coincide. It is the steady-state solution, obtained if the source was switched on sufficiently



far in the past that any “transients” (solutions of the homogeneous equation) induced by the
sudden switch-on on the source have died away.

Our derivation of G required a damping term (else the poles would have been on the real
axis), and that same damping term ensures the vanishing of the integral at t′ → −∞. It turns
out (as we shall see later, 2.2.3) that the result for G does hold even if γ = 0, and, provided
ωd 6= ω0, Eq. (1.84) does represent the “particular integral” corresponding to the source. But
in the absence of damping, “transients” don’t die away. And if we replace the lower limit
by −T to reflect a source switched on in the distant past, we will obtain terms proportional
to ei(ω0±ωd)T e±iω0t, which indeed have the form of solutions of the homogeneous equation with
phases that depend on the switch-on time. The solution in the absence of transients is obtained
simply by dropping such terms, or as sometimes phrased, taking limT→∞ eiαT = 0. If the source
has “always” been on, there should be no transients induced by the switch-on.

Of course if ωd = ω0 we hit a problem—but we knew that already. For completeness we
note that in that case, returning to the first line of Eq. (1.84), with γ = 0 and ωr = ωd = ω0,

y(t) = f0

∫ t

−T

eiω0(t−2t′) − e−iω0t

2iω0

dt′ = − f0
2iω0

(T + t)e−iω0t, (1.85)

(dropping the “transient”) which is indeed the relevant particular integral for this case. This
reflects an amplitude that grows linearly with time since switch-on at −T .

1.5.2 Laplace Transforms: differential equations with initial condi-
tions

Arfken 20.7-10

Riley 13.2, 25.5

Though we are less concerned with these in this course, problems in the time domain are
almost always specified by initial conditions rather than boundary conditions, that is we do not
usually specify conditions on a solution at some future time t. Rather we set it up and want
to see how it evolves.

For such problems the Laplace transform is more useful than the Fourier Transform:

F (s) =

∫ ∞
0

e−stf(t) dt. (1.86)

Unlike with the F.T. it is hard to assign a physical meaning to the conjugate variable s (some-
times called p or other names).

Convergence of the integral may require restrictions on s; for instance if f(t) = eat, F (s) =
1/(s− a) only for s > a.

The Laplace transform is insensitive to f(t) for t < 0. It will be unchanged if we replace
f(t) by Θ(t)f(t).

In practice the inverse is normally found via look-up tables such as Table 1.1. If F (s) is the
L.T. of f(t), then Θ(t)f(t) is the inverse Laplace transform of F (s). The Θ(t) is important!

The shift theorems are particularly useful:

F (s− s0)→ es0tf(t)Θ(t) and e−st0F (s)→ f(t− t0)Θ(t− t0) (1.87)

For Laplace transforms, the convolution h(t) of two functions f(t) and g(t) is given by

h(t) = (f ∗ g)(t) =

∫ t

0

f(u)g(t− u) du. (1.88)



This agrees with the previous definition (with an integral from −∞ → ∞) if both functions
vanish for negative values of their argument. The inverse Laplace transform of a product
H(s) = F (s)G(s) is the convolution h(t) = f ∗ g.

The inverse Laplace transform may be computed using the Bromwich integral, in which s
is treated as a complex variable lying on a line parallel to the imaginary axis:

f(t) =
1

2πi

∫ λ+i∞

λ−i∞
estF (s) ds. (1.89)

The offset λ must be positive, and large enough so that the line of integration lies to the right
of all poles of F (s). (For proof, see Arfken 20.10 or Riley 25.5)

λ

If F (s) has only poles, and no more complicated analytic structure such as branch points,
we can close the contour of integration as shown in the diagram (green arc). Provided F (s)
tends to zero as |s| → ∞, for t > 0 Jordan’s Lemma ensures that contribution of the arc
vanishes as the radius is taken to infinity. For t < 0, we close the contour to the right instead
and as no poles are enclosed the integral vanishes. Hence f(t) is just given by Θ(t) times the
sum of the residues of estF (s). If F (s) has a branch cut the contour will be more complicated.

The expressions for the Laplace transforms of the derivatives of f(t),

f ′(t)→ sF (s)− f(0) and f ′′(t)→ s2F (s)− sf(0)− f ′(0). (1.90)

allow us to recast differential equations for f(t) as algebraic ones for F (s). An important
feature is that the initial conditions on f(t) are incorporated directly. Higher derivatives can
also be included. As before the challenge is to invert F (s); as before the general solution can
be cast as a convolution, but for specific cases it may also be possible to use the look-up table
or the Bromwich integral to do the inversion directly. As a fairly trivial example to illustrate
the problem, consider

df

dt
+ f(t) = Θ(t)(1−Θ(t− 2)), f(0) = 1 (1.91)

that is a unit driving term which lasts for 2 time units—and could also be written Θ(t)Θ(2− t).
This gives

sF (s)− 1 + F (s) =

∫ 2

0

e−stdt =
1

s
(1− e−2s)

⇒ F (s) =
1

s
− e−2s

s
+

e−2s

s+ 1

⇒ f(t) = Θ(t)
(

1−Θ(t− 2) + Θ(t− 2) e−(t−2)
)

= Θ(t)Θ(2− t) + e2Θ(t− 2) e−t.

(1.92)



To reach the second line we used partial fractions to separate 1/s(s+ 1) and for the third line
we used the lookup table including the shift theorem (1.87). The solution is a constant until
the driving term ceases, then it decays with the natural decay time of the undriven solution
e−t.

Coupled differential equations can also be handled with Laplace methods, since one obtains
simultaneous algebraic equations for the corresponding transforms. Laplace methods have
been extensively used to analyse the propagation of signals though electrical circuits, with the
convolution method allowing for efficient calculation of numerical solutions for a variety of
inputs.

f(t) F (s) =
∫∞
0
e−stf(t)dt Restrictions

1
1

s
s > 0

eat
1

s− a
s > a

tn
n!

sn+1
s > 0, n a positive integer

t−1/2
√
π

s
s > 0

sin(at)
a

s2 + a2
s > 0

cos(at)
s

s2 + a2
s > 0

sinh(at)
a

s2 − a2
s > a

cosh(at)
s

s2 − a2
s > a

tnf(t) (−1)n
dn

dsn
(F (s)) s > 0, n a positive integer

f(t)
t

∫∞
s
F (y)dy s > 0

f(at) 1
a
F ( s

a
) s > 0

f ′(t) sF (s)− f(0) s > 0

f ′′(t) s2F (s)− sf(0)− f ′(0) s > 0

Θ(t− t0)
e−st0

s
t0, s > 0

Θ(t− t0)f(t− t0) e−st0F (s) t0, s > 0

es0tf(t) F (s− s0) s > s0

δ(t− t0) e−st0 t0, s > 0

Table 1.1: Table of common Laplace transforms and useful relations



2. Green’s Functions

2.1 Introduction

In the previous chapter we were largely concerned with homogeneous ODEs, including eigen-
value problems. In this chapter we will consider inhomogeneous problems, and particularly the
method of solution that involves constructing a function, unique to the linear operator on the
LHS, which can be applied to any driving term on the RHS to give a solution. This called
the Green’s function of the operator (subject to relevant boundary conditions). We had a brief
preview of a Green’s function in the last section, Eq. (1.79).

Consider in particular the problem in electrostatics of finding the electric potential due to
charges. Starting from the potential at r due to a single charge q0 at r0,

Φ(r) =
q0

4πε0|r− r0|
(2.1)

and using the principle of superposition, we have for a series of charges qi, or for a region V of
charge density ρ(r),

Φ(r) =
1

4πε0

∑
i

qi
|r− ri|

or Φ(r) =
1

4πε0

∫
ρ(r′)

|r− r′|
d3r′. (2.2)

The potential is a solution to Poisson’s equation, −∇2Φ(r) = ρ(r)/ε0, which is an inhomoge-
neous ODE with a source term. The Green’s function we are looking for that enables us to
construct the solution from the source term is, by inspection,

G(r, r′) =
1

4π|r− r′|
, (2.3)

with

Φ(r) =

∫
G(r, r′)

ρ(r′)

ε0
d3r′. (2.4)

On its own the Green’s function is (ε0 times) the potential due to a unit point charge at r′,
and it satisfies the Laplace equation (as a function of r) everywhere except at r = r′; it also
satisfied the boundary condition that Φ vanishes as |r| → ∞. Note r′ is considered just as a
parameter in this interpretation, but mathematically the Green’s function is a function of both
r and r′.

Writing
ρ(r)

ε0
= −∇2

rΦ(r) = −
∫
∇2

rG(r, r′)
ρ(r′)

ε0
d3r′ (2.5)

implies that
−∇2

rG(r, r′) = δ(r− r′) (2.6)

which can in fact be taken as the equation that defines the Green’s function, and again makes
clear that it is the response to a point source. (The subscript on ∇2

r just reminds us that it
acts on functions of r.)

26



Returning to one dimension and considering a general linear differential operator L (or Lx)
subject to certain boundary conditions, we define G(x, z) as the function which satisfies the
following equation together with the the boundary conditions in x:

LxG(x, z) = δ(x− z). (2.7)

Thus for some function f(x) on an interval [a, b], we can write

f(x) =

∫ b

a

δ(x− z)f(z) dz

=

∫ b

a

LxG(x, z)f(z) dz = Lx

∫ b

a

G(x, z)f(z) dz (2.8)

and hence

Ly(x) = f(x) ⇒ y(x) =

∫ b

a

G(x, z)f(z) dz (2.9)

(x′, y, z and t are all commonly-used alternatives for the integration variable/second argu-
ment of the Green’s function.)

Numerically, integration is much easier than the solution of differential equations, so if we
can find a Green’s function we have a very efficient way to proceed, and to deal with any source
term. We will consider three methods: the continuity method, the eigenfunction expansion and
Fourier transform methods.

2.2 Ordinary differential equations

Arfken 10.1

Riley 15.2.5

2.2.1 Continuity method

Consider the Green’s function G(x, z), for an operator L subject to homogeneous boundary
conditions at x = a and x = b. For definiteness we assume a Hermitian second-order differential
operator of the form Lv ≡ −(pv′)′+qv and assume there are only ordinary points for x ∈ (a, b).

The first thing to note is that for x < z and for x > z (but not at x = z), G(x, z) satisfies
LxG(x, z) = 0. Let y1 and y2 be solutions of Ly = 0, and let y1 satisfy the boundary condition
at a and y2 that at b. (Recall that in general there will be no solution that satisfies both. If
there is, the solution to the inhomogeneous equation is not unique.) The normalisation of y1
and y2 is not fixed by the homogeneous boundary conditions, and in what follows we allow it
to depend on the second variable z.

Then a Green’s function of the form

G(x, z) =

{
y1(x)u1(z) for x < z

y2(x)u2(z) for x > z,
(2.10)

where u1 and u2 are as-yet undetermined functions, satisfies the boundary conditions and
LxG(x, z) = 0 for x 6= z. What we need is to find the two functions u1,2 so that the behaviour
at x = z is correct.
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Figure 2.1: Green’s function for Ly ≡ −y′′+y with y(0) = 0 and y(1) = 0, plotted as a function
of x for z = 0.4. The line segments are not in fact straight but sections of sine curves.

Furthermore if L is a second-order operator we need G(x, z) to be continuous at x = z;
the first derivative at least must be finite there. Thus y1(z)u1(z) = y2(z)u2(z), which in turn
requires u1/u2 = y2/y1, and

G(x, z) =

{
A(z)y2(z)y1(x) for x < z

A(z)y1(z)y2(x) for x > z.
(2.11)

To find the function A(z), we integrate across the point x = z:∫ z+ε

z−ε
LxG(x, z)dx =

∫ z+ε

z−ε
δ(x− z) = 1 (2.12)

So

1 = −[p(x) d
dx
G(x, z)]z+εz−ε +

∫ z+ε

z−ε
q(x)G(x, z)dx (2.13)

G(x, z), and hence q(x)G(x, z), are finite and continuous at x = z, so as ε→ 0 the second term
on the RHS vanishes. The x-derivative G′(x, z) is finite but different on either side of x = z,
with a finite discontinuity at x = z; thus the first term does not vanish. So

1 = lim
ε→0

(−A(z))
(
y1(z)y′2(z + ε)p(z + ε)− y2(z)y′1(z − ε)p(z − ε)

)
= −A(z)p(z)

(
y1(z)y′2(z)− y2(z)y′1(z)

)
(2.14)

= −A(z) p(z)W
(
y1(z), y2(z)

)
(2.15)

where we have used the continuity of the yi and of p to replace z ± ε with z as ε→ 0.
Now we have seen before, (1.21), that the Wronskian of two solutions of a Sturm-Liouville

equation is proportional to 1/p, and so A(z) is in fact a constant,

A(z) ≡ A = − 1

p(z)W
(
y1(z), y2(z)

) . (2.16)

This expression substituted into (2.11) gives our final result for G(x, z). We note that it is
symmetric under x ↔ z, something that does not persist if the problem is not Hermitian (see
the end of this subsection).

For example, with Ly ≡ −y′′ − y subject to boundary conditions y(0) = 0 and y(1) = 0,
which is Hermitian, the two solutions are y1 = sinx and y2 = sin(1 − x). The Wronskian is



− sin(1) and so A = 1/ sin(1) and

G(x, z) =

{
1

sin(1)
sin(x) sin(1− z) for x < z

1
sin(1)

sin(1− x) sin(z) for x > z
(2.17)

This is plotted in figure 2.1.
The solution to Ly = f is given by

y(x) =
1

sin 1

(
sin(1− x)

∫ x

0

sin(z)f(z)dz + sin(x)

∫ 1

x

sin(1− z)f(z)dz

)
. (2.18)

Watch out that the first integral contains the second definition of G from Eq. (2.17), since
z < x. Similarly the second integral contains the first definition. Then for instance for f = 1
we get

y(x) =
1

sin 1
(sin(1− x)(− cosx+ 1) + sin(x)(1− cos(1− x)))

= cos(x) + tan(1
2
) sin(x)− 1 (2.19)

which could have been obtained much more easily using the particular integral yPI = −1 plus the
solution of the homogeneous equation a cosx+ b sinx, together with the boundary conditions!
However much more complicated cases can also be handled with the same Green’s function.

If the operator is not Sturm-Liouville, but one of the form Lv ≡ −(p0v
′′ + p1v

′) + qv, the
derivation starts the same way with the form Eq. (2.11) for G, and in fact the result is almost
the same with p→ p0. In place of Eq. (2.13) we have

1 =

∫ z+ε

z−ε

(
−p0(x)G′′(x, z)− p1(x)G′(x, z) + q(x)G(x, z)

)
dx

= [−p0(x)G′(x, z)]z+εz−ε +

∫ z+ε

z−ε

(
p′0(x)G′(x, z)− p1(x)G′(x, z) + q(x)G(x, z)

)
dx

= [−p0(x)G′(x, z) +
(
p′0(x)− p1(x)

)
G(x, z)]z+εz−ε +

∫ z+ε

z−ε

(
−p′′0(x) + p′1(x) + q(x)

)
G(x, z)dx

= [−p0(x)G′(x, z)]z+εz−ε as ε→ 0. (2.20)

In the ε → 0 limit the continuity of G means that, as in (2.13), only the p0(x)G′(x, z) term
contributes to the integral across the cusp. Then continuing as before we find

A(z) = − 1

p0(z)W
(
y1(z), y2(z)

) , (2.21)

which resembles Eq. (2.16), but is not constant in this case. This expression substituted into
(2.11) gives our final result for G(x, z).

Thus for real SL operators, G(x, z) is symmetric under exchange of x and z, whereas for
non-SL operators, it is not.

We know that a non-SL operator can be cast in SL form by multiplication by an integrating
factor w(x); if G̃(x, z) is the Green’s function of the SL form, then G̃(x, z)w(z) is the Green’s
function of the original form.



2.2.2 Eigenfunction expansion

Suppose L together with the boundary conditions is a Hermitian operator, and hence has a
complete set of orthogonal eigenfunctions Lφn = λnφn (we will come back to the case where
there is a weight function). Then the source term can be expanded f(x) =

∑
n fnφn(x) where

fn = 〈φn|f〉, and the solution likewise: y(x) =
∑

n ynφn(x). For the moment we will assume
that λn 6= 0. Then we have

Ly = f ⇒
∑
n

ynλnφn(x) =
∑
n

fnφn(x) ⇒ yn =
fn
λn
. (2.22)

It is easily seen that the following expression for the Green’s function

G(x, z) =
∑
n

φn(x)φ∗n(z)

λn
(2.23)

reproduces this: ∫
G(x, z)f(z)dz =

∑
n

fn
λn
φn(x) = y(x). (2.24)

This nicely demonstrates what we saw before, namely that for a Hermitian operator, G(x, z) =
G∗(z, x). Similarly it illustrates the fact that we run into problems if there is a zero eigenfunc-
tion, that is if the homogeneous equation Lφ0 = 0 has a solution that satisfies both boundary
conditions. This time though we see one way out: provided 〈φ0|f〉 = 0 we can simply omit the
homogeneous solution (or “zero mode”) from the sum. If the source does not excite the zero
mode, we don’t need to include it in the solution, though that solution is then not unique as
we can always add in any multiple of the zero mode.

We are reminded of matrix equations Ayn = f , which are not invertible if det A = 0. Again
if f is not orthogonal to the zero eigenvector there is no solution; if it is, there are infinitely
many solutions.

A case in point is the electrostatic potential, considered at the start of the problem. Depend-
ing on the boundary conditions, extra solutions of ∇2Φ = 0 corresponding to external electric
fields may be added to the solution. In that physical case, though, the boundary conditions
will suffice to make the solution unique.

What about the case with a weight function, Lφn = λnρ(x)φn? In fact the Green’s function
has exactly the same form, though the proof that it works is slightly more involved, see the
examples. For non-Hermitian operators the integrating factor required to cast the problem in
Hermitian form enters though, as discussed at the end of the previous subsection.

For the problem we considered above, Ly ≡ −y′′ − y, subject to boundary conditions
y(0) = 0 and y(1) = 0, the normalised eigenfunctions are

√
2 sin(nπx) and the eigenvalues are

(nπ)2 − 1. Thus an alternative form for the Green’s function is

G(x, z) =
∞∑
n=1

√
2 sin(nπx)

√
2 sin(nπz)

(nπ)2 − 1
(2.25)

This is usually much less convenient for finding actual solutions. For the source f = 1 considered
before a solution is easily found using

∫ 1

0
sin(nπz)dz = 2/nπ for odd n, and equating the two

forms gives

cos(x) + tan(1
2
) sin(x)− 1 =

∑
n=1,3...

4 sin(nπx)

nπ(n2π2 − 1)
(2.26)



which it can be checked numerically is true!
We chose above an operator and boundary conditions with no zero mode. Had we chosen

the more physical case of Ly ≡ −y′′ − k2y, with y(0) = y(L) = 0, the eigenvalues would be k2n
where kn = nπ/L and the Green’s function would read

G(x, z) =
∑
n=1

2

L

sin(knx) sin(knz)

k2n − k2
(2.27)

Such an equation arises for a stretched string driven at a frequency ω/c; we see that as expected,
the response becomes very large close to a resonant frequency, unless the spatial form of the
driving force cannot excite the relevant mode. An example would be driving at the mid-point,
which can’t excite modes on even n since they have nodes there.

2.2.3 Initial value boundary conditions

Here we consider the Green’s function for the case of boundary conditions fixed only at one
point, x = a, where we want a solution for x > a. We assume L has no singular points for
x ∈ [a,∞), and write Lv ≡ −(p0v

′′ + p1v
′) + q0v.

Homogeneous boundary conditions at a single point can only be of the form y(a) = 0,
y′(a) = 0 and the only solution of the homogeneous equation compatible with these is y = 0.
Thus G(x, z) = 0 for a ≤ x < z. For x > z, though, the Green’s function will be proportional
to the full, unconstrained solution with two undetermined “constants” (which can depend on
z):

G(x, z) =

{
0 for a ≤ x < z

u1(z)y1(x) + u2(z)y2(x) for x > z.
(2.28)

Continuity of G gives G(z, z) = 0, so

u1(z)

u2(z)
= −y2(z)

y1(z)
. (2.29)

For x < z, G′ = 0 also, so the discontinuity in the slope constrains the slope for x > z via
Eq. (2.20):

− p0(z)
(
u1(z)y′1(z) + u2(z)y′2(z)

)
= 1. (2.30)

Together, these give

u2(z) = A(z)y1(z), u1(z) = −A(z)y2(z), A(z) =
(
−p0(z)W (y1(z), y2(z)

)−1
. (2.31)

(As before, A(z) will be a constant if L is Hermitian.) Hence

G(x, z) = Θ(x− z)A(z)
(
y1(z)y2(x)− y2(z)y1(x)

)
, (2.32)

recalling the definition of the step function Θ(x) which is zero for negative x and one for positive
x.

Because G(x, z > x) = 0, only G(x, z < x) contributes to the solution of Ly = f , and

y(x) =

∫ ∞
a

G(x, z)f(z)dz = y2(x)

∫ x

a

A(z)y1(z)f(z)dz − y1(x)

∫ x

a

A(z)y2(z)f(z)dz. (2.33)



This embodies an important point: at a given point, x0, only the values of f(x) for x < x0
contribute to y(x0). If the independent variable x is in fact time (as is common in initial value
problems) this embodies causality. What the source does in the future can’t influence the
solution at the present time!1

Consider the case of Ly(t) ≡ ÿ(t) + w2y(t), where we do use time as the variable,
t ∈ (−∞,∞), and y could be the position of an object subject to an undamped harmonic
restoring force as well as an external driving term. The solutions are y1 = sinωt, y2 = cosωt,
so W = −ω, p0 = −1 and A = −1/ω, and

G(t, t′) =

{
0 for −∞ ≤ t < t′

− 1
ω

(
sinωt′ cosωt− cosωt′ sinωt

)
for t > t′

= Θ(t− t′)
sin
(
ω(t− t′)

)
ω

, (2.34)

where in the last line we have used a trig identity. We note that the Green’s function only
depends on t − t′, which makes sense as neither the equation nor the boundary conditions
introduce any special time; they are time-translation invariant. Then the response to a driving
term f(t) is

y(t) =

∫ t

−∞

sin
(
ω(t− t′)

)
ω

f(t′) dt′. (2.35)

Typically a driving term will be switched on at some initial time ti, which will change the lower
limit of the integral in (2.35) from −∞ to ti.

It may be noted that we have seen something close to this before, namely Eq. (1.82). There
we considered a lightly damped oscillator, and obtained a Green’s function (though we didn’t
call it that) which reduces to Eq. (2.34) if we take the damping coefficient γ to zero.2

2.2.4 “Outgoing wave” boundary conditions

The Helmholtz operator, Ly ≡ −y′′−k2y, arises from the wave equation if the time-dependence
of the source and solution is assumed to be e−iωt, and k = ω/c. (In form, it is identical to the
problem we considered immediately above.) Another form of boundary condition that we can
impose is “outgoing waves only”: we have a source function confined to some region and its
influence can propagate away from the region, but we don’t want anything coming in. This
corresponds to demanding y(x → −∞) = e−ikx and y(x → ∞) = eikx, which we can see
corresponds to out-going waves if we reintroduce the time dependence to give ei(k|x|−ωt), a wave
which is travelling to the right for positive x and to the left for negative x.3

1The equations of course are symmetric under time. We could have explored the solutions for x < a and
obtained backwards-travelling influence. This is a common feature: we need to set up the problem to obtain
physically-sensible solutions.

2If we recall the method of solution there, which was via contour integration, we required the damping term

to keep the poles off-axis; they were at ±
√
ω2 − 1

4γ
2 − i 12γ ≈ ±ω − i

1
2γ. We will return to contour integrals

as a method of solution, and will again discover that physically-sensible results are obtained by moving poles
off-axis by an infinitesimal amount in a way that corresponds to introducing damping, see section 2.3.5.

3Had we assumed time dependence of eiωt the two solutions e±ikx would of course be reversed. For classical
problems where the physical solution is real and the use of complex solutions is only for simplicity, we end up
taking the real part to get cos(k|x| − ωt) either way. In QM though the sign is not arbitrary and our choice
corresponds to positive energy.



In constructing the Green’s function therefore we have to use these two solutions for x < z
and x > z respectively. The Wronskian is 2ik and so

G(x, z) =

{
− 1

2ik
eikze−ikx for −∞ < x < z

− 1
2ik

e−ikzeikx for z < x <∞
⇒ G(x, z) = − 1

2ik
eik|x−z| (2.36)

Then for the solution we have

y(x) = − 1

2ik

(∫ x

−∞
eik(x−z)f(z) dz +

∫ ∞
x

eik(z−x)f(z) dz

)
(2.37)

It is assumed that the restricted spatial extent of the source will avoid diverging integrals.
This deals with sources that oscillate in time; we will postpone more general time dependence

to our treatment of the wave equation.

2.2.5 First order equations

We have concentrated on second-order equations since these are the ones we meet most often.
For first-order equations there is only one linearly-independent solution of the homogeneous
equation, and so we cannot satisfy separated boundary conditions. However the solution can
satisfy a periodic boundary condition such as y(a) = y(b) (see the second problem sheet), or an
initial condition such as y(a) = 0. In the latter case (switching to time), if y1(t) is a solution
of the homogeneous equation, the Green’s function itself is discontinuous at t = t′ and has the
form
G(t, t′) = Θ(t− t′)A(t′)y1(t). The discontinuity of G, rather than of its derivative, is given by
integrating across δ(t− t′), and that fixes A(t′).

For the simple case Ly ≡ dy
dt

+ κy, y1 = e−κt and

lim
ε→0

∫ t′+ε

t′−ε
LtG(t, t′)dt =

∫ t′+ε

t′−ε
δ(t− t′) = 1

⇒ A(t′)y1(t
′)− 0 = 1 ⇒ A(t′) = eκt

′
. (2.38)

Thus
G(t, t′) = Θ(t− t′) e−κ(t−t

′). (2.39)

2.3 Partial differential equations

Arfken 10.3,20.3

Riley 21.5

In this section we will only be interested in problems in which the spatial derivatives take
the form of the Laplacian in one to three dimensions; these include Poisson’s equation (no
time dependence), the Helmholtz equation L ≡ −∇2 − k2 which, among other cases, arises
from purely periodic time dependence; the diffusion equation, the Schrödinger equation and
the wave equation. In this section we will use variables (x, x′) rather than (x, z), and in higher
dimensions (r, r′) as in the introduction. Spatial integrals

∫
. . . dnr, and their momentum-space

equivalents, are over all space if not otherwise specified.



2.3.1 Poisson’s equation

Poisson’s equation is
−∇2φ(r) = ρ(r), (2.40)

familiar from electrostatics (setting ε0 to 1).
We are not going to construct the Green’s functions; rather we are going to note the results

that are required to reproduce the known potentials for an infinite sheet of charge, and line
charge and a point charge of (effectively) 1D, 2D and 3D respectively.4

In 3D the known potential from a point source ρ(r) = qδ(r− r′) leads immediately to

G(r, r′) =
1

4π|r− r′|
. (2.41)

Similarly in 2D, the 1/|r − r′| fall-off of the electric field of an infinite line charge leads to
a logarithmically-rising potential

G(r, r′) = − 1

2π
ln |r− r′| (2.42)

(r being the position vector in the 2D plane perpendicular to the line).
For the 1D case, we recall the case of an infinite sheet of charge in the yz-plane corresponding

to ρ(x) = σδ(x). The potential rises linearly with |x| on either side, and the field is constant
and outwards-directed on both sides, E = σ/2ε0. This is achieved by

G(x, x′) = −1
2
|x− x′|. (2.43)

All of these have something in common: they depend only on R = r− r′ (only the distance
from the source to the field point matters, not the absolute position of each). This comes from
the fact that the implicit boundary conditions are the behaviour of the field at infinity, and not
at any finite r. Hence there is nothing in the homogeneous equation or boundary conditions
to break translational invariance. All the problems in the rest of this section have the same
feature, and instead of G(r, r′) we write G(r− r′) or G(R).

This might seem rather restrictive—large classes of interesting problems do involve finite
boundaries. But in fact we can continue to use the free Green’s function to construct the
particular integral, and then add solutions of the homogeneous equation to satisfy the boundary
condition. So though that is easier said than done in practice, it still means that the following
sections are in fact of wider applicability than one might think.

2.3.2 Differential equations in time and space

Examples of these are the diffusion equation, the wave equation and Schrödinger’s equation.
Generically they are written

Lr,ty(r, t) = f(r, t), (2.44)

with Lr,t being written explicitly to indicated that it is an operator involving partial derivative
in time t and space r. The Green’s function is the response to a unit impulse at an instant in
time and a point in space; we need it to satisfy

Lr,tG(r, r′, t, t′) = δ(r− r′)δ(t− t′). (2.45)

4In 2D and 3D, one can also exploit axial/spherical symmetry of a problem and only use a Green’s function
to solve the radial equation; this is effectively a 1D problem with solutions involving powers of r and we won’t
pursue it further here though it features on the problem sheet. More interesting, at least for the development
of this section, is the general case without symmetry.



Then the solution for a given space- and time-dependent source f is given by∫
V

∫ ∞
−∞

G(r, r′, t, t′)f(r′, t′)dt′ d3r′. (2.46)

∫
V

indicates integration over all space; all of our integrals will be of that form though so we
will drop the subscript.

As signalled above, we are going to exploit translational symmetry in the absence of bound-
ary conditions other than at infinity, and assert that G can depend only on R = r − r′;
furthermore the similar absence of any special time means that it also only depends only on
τ ≡ t − t′. Since, from the point view of differentiation wrt r and t, these are just constant
shifts which place the impulse at the origin and at t = 0, so we can write Eq. (2.45) as

LR,τG(R, τ) = δ(R)δ(τ). (2.47)

(We could just use r and t now, and many texts do.) We note too that the integral over the
source in Eq. (2.46) now has the form of a convolution.

The method we will pursue is to take the spatial Fourier transform of the Green’s function,
denoting (in 3D) the conjugate variable to R = (X, Y, Z) as K = (Kx, Ky, Kz), but initially
keeping the number of spatial dimensions (n) general:

G̃(K, τ) =

∫
e−iK·RG(R, τ)dnR, G(R) =

1

(2π)n

∫
eiK·RG̃(K, τ)dnK . (2.48)

The reason that this is useful is that spatial derivatives of G are replaced by factors of K times
G̃, as we saw in 1.5.1: F.T.[∇RG] = iKG̃ and F.T.[∇2

RG] = −K2G̃, where K = |K|.5 In
particular if LR,τ ≡ Lτ −∇2, where the first term has only time derivatives, then

LR,τG(R, τ) =
1

(2π)n

∫
eiK·R(Lτ +K2)G̃(K, τ)dnK = δ(τ)

1

(2π)n

∫
eiK·RdnK , (2.49)

where the extreme RHS is a representation of δ(R), and we can read off

(Lτ +K2)G̃(K, τ) = δ(τ). (2.50)

Thus we obtain an ODE in τ for G̃(K, τ) in which K just appears as a parameter; we solve
this using methods from sections 2.2.3 and 2.2.5 and then take the inverse Fourier transform
to recover G(R, τ).

2.3.3 Diffusion Equation

The diffusion equation is derived from two considerations. Defining ψ(r, t) as the density of
particles, ρ(r, t) a source (a rate of injection of particles at a given point in space and time)
and j(r, t) as the current density of particles, continuity gives

∇ · j = −∂ψ
∂t

+ ρ(r, t) (2.51)

5The same is true of time-derivatives under a temporal FT, of course. So why not do both? We can in
fact—see section 2.3.6—but the method of this section is easier, particularly in cases incorporating causality.



while the current is related to the density gradient by the diffusion constant by the relation
j = −D∇ψ if the density is not too large. Hence we have

∂ψ

∂t
−D∇2ψ ≡ Lψ = ρ(r, t) . (2.52)

It is clear that in this case we want the Green’s function to give the concentration of particles
at (r, t) due to an injection of unit strength at position and time (r′, t′), with

ψ(r, t) =

∫ ∞
ti

∫
G(r− r′, t− t′)ρ(r′, t′)dt′d3r . (2.53)

The injection of particles has to start at some finite time which we typically take as ti = 0; we
will see that the effective upper bound on the t′ integral is in fact t.

We define G̃(K, τ) as the spatial Fourier transform, (2.48), and obtain by comparison with
Eq. (2.50):

∂G̃(K, τ)

∂τ
+DK2G̃(K, τ) = δ(τ) . (2.54)

This is a straightforward one-dimensional Green’s function equation in time. By causality,
G̃(K, τ < 0) = 0; as the operator is first-order, G̃ itself is discontinuous at τ = 0. We have
solved this already, see Eq. (2.39):

G̃(K, τ) = Θ(τ)e−DK
2τ . (2.55)

Then in 3D,

G(R, τ) = Θ(τ)
1

(2π)3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

eiK·Re−D|K|
2τdKxdKydKz

= Θ(τ)
1

(2π)3

∫ ∞
−∞

e−DτK
2
x+iKxXdKx

∫ ∞
−∞

e−DτK
2
y+iKyY dKy

∫ ∞
−∞

e−DτK
2
z+iKzZdKz

= Θ(τ)
(

1
4πDτ

)3/2
e−R

2/(4Dτ) . (2.56)

Equally, we can write down the solution in any other number of dimension, with only the power
of 3/2 changed to n/2.

For future reference let us write

G(R, τ) = Θ(τ)U(R, τ) where U(R, τ) =
(

1
4πDτ

)n/2
e−R

2/(4Dτ) . (2.57)

We note for τ > 0, G and U are the same, and a solution of the homogeneous equation.
U(R, t) is called the propagator, and represents the subsequent spatial distribution of particles
in response to an instantaneous source of unit strength.

The spatial distribution U(R, t− t′) is a Gaussian with a time-dependent width that starts
as zero at t = t′ and grows with

√
t− t′. This

√
τ behaviour is of course a well-known result

for a random walk. Furthermore the height tends to infinity as τ → 0. This behaviour suggests
that the limit is a spatial delta function, something which is most easily seen if we return to
the Fourier transform Eq. (2.55) which is independent of K as τ → 0, so that the inverse
FT is indeed a delta function. Hence the propagator has the properties U(R, 0) = δ(R) and
LU(R, τ > 0) = 0.

A typical diffusion problem, in fact, does not involve a source at all, but an initial distri-
bution ψ0(r) at time t = 0. This is an initial-value problem, and as the evolution is first-order



in time, the initial value is all we need (i.e. not its time derivative). The subsequent solution
satisfies the homogeneous equation Lψ = 0. Given the properties of U deduced above, it can
be shown (see the problem sheet) that the solution at subsequent times is

ψ(r, t) =

∫
U(r− r′, t)ψ0(r

′) dnr′ . (2.58)

So for the diffusion equation, a source which injects particles at time zero and an initial distri-
bution at time zero have the same subsequent effect!

A problem with both a source and an initial distribution will have a solution which is the
sum of Eqns (2.53) and (2.58).

2.3.4 Wave Equation

Now we consider

−∇2ψ +
1

c2
∂2ψ

∂t2
≡ Lψ = ρ(r, t). (2.59)

We can proceed as for the diffusion equation, performing a Fourier transform on the spatial
variables and obtaining by comparison with Eq. (2.50):

1

c2
∂2G̃(K, τ)

∂τ 2
+K2G̃(K, τ) = δ(τ) (2.60)

which is a one-dimensional Helmholtz-type equation with homogeneous solutions Aeiωτ+Be−iωτ

(setting cK = ω). We solved this above in the “initial values” section, see Eq. (2.34):

G̃(K, τ) = c2Θ(τ)
sin(cKτ)

cK
, (2.61)

whence (in 3D)

G(R, τ) = Θ(τ)
c

(2π)2

∫
eiKR cos θK sin(cKτ) sin θKdθKKdK (2.62)

= −Θ(τ)
c

2R(2π)2

∫ ∞
0

(
eiKR − e−iKR

) (
eicKτ − e−iKcτ

)
dK

= Θ(τ)
c

4πR

(
δ(cτ −R)− δ(cτ +R)

)
= Θ(τ)

1

4πR
δ(τ −R/c) (2.63)

In the penultimate step, we used symmetry to extend the integral to −∞, and in the last step
we used the Θ function to kill the second δ function whose argument only vanishes at negative
τ . In the final form the Θ(τ) is actually redundant.

In 1D we can also do the integral simply; using X = x−x′ (which unlike R can be negative



as well as positive) we have

G(X, τ) = c2Θ(τ)
1

2π

∫ ∞
−∞

eiKX
(
eicKτ − e−iKcτ

) 1

2icK
dK

= Θ(τ)
c

4π

∫
dX

∫ ∞
−∞

eiKX
(
eicKτ − e−iKcτ

)
dK (2.64)

= Θ(τ)
c

2

∫
dX (δ(X + cτ)− δ(X − cτ))

= Θ(τ)
c

2
(Θ(X + cτ)−Θ(X − cτ))

= 1
2
cΘ(τ)Θ(τ − |X|/c). (2.65)

The Θ(τ) is again redundant since the second Θ requires τ ≥ |X|/c ≥ 0.
In 2D the result, which we won’t prove, is

G(R, τ) = Θ(τ)
1

2π

Θ(τ −R/c)√
τ 2 −R2/c2

. (2.66)

(It can most readily be obtained by integrating the 3D Green’s function over all z.) These
results all satisfy causality in the forward time direction, so that no influence of a source is felt
at a distance from it until a signal travelling at the speed of light would have time to reach
it. The Green’s function we have obtained is often called the retarded Green’s function. The
asymmetry in time was built into our initial value problem, but the light-travel time restriction
was not, and arises from the form of the equation.

In three dimensions the reaction at a distance r to a briefly pulsed source (at the origin at
time zero for definiteness) is felt only at t = r/c. In one and two dimensions though this is not
so; nothing is felt before t = r/c, but the effect does not then vanish immediately but lingers:
there is an “afterglow”. In 2D it fades, in 1D it does not; the displacement of a stretched string,
for instance, is changed by a finite amount by the passage of the signal.

In Lorentz gauge, Maxwell’s equations can be recast as four separate wave equations for the
electric potential and the components of the vector potential, with the charge density and the
components of the current density as sources. The solution in two special cases (both 3D) can
be obtained simply:

1. For a charge distribution ρ(r, t), we find for the electric potential

Φ(r, t) =

∫
δ
(
t− t′ − |r− r′|/c

)
4πε0|r− r′|

ρ(r′, t′) d3r′ dt′

=

∫
ρ(r′, tret)

4πε0|r− r′|
d3r′ ,

where the retarded time, tret = t − |r − r′|/c, ensures that it is the charge density at r′

at the appropriate point in the past that influences the field at (r, t). This should be
familiar from electrodynamics. For a static charge distribution this simply gives

Φ(r) =

∫
ρ(r′)

4πε0|r− r′|
d3r′ , (2.67)

a result which should need no explanation!



2. If the source is a single moving charged particle, which is at a position s(t′) at time t′, we
use ρ(r′, t′) = qδ

(
r′ − s(t′)

)
and we find the potential,

Φ(r, t) =

∫
δ
(
t− t′ − |r− r′|/c

)
4πε0|r− r′|

qδ
(
r′ − s(t′)

)
d3r′ dt′

=

∫
q

4πε0|r− s(t′)|
δ
(
t− t′ − |r− s(t′)|/c

)
dt′. (2.68)

The radiation that is observed at point r, time t is emitted at the “event” of the particle
reaching (s(tret), tret), where the retarded time is such that this event lies on the past light
cone.

In the second problem sheet, you are asked to show that the above expression reduces to
the usual formula for the Liénard-Wiechert potential.

As with the diffusion equation the Green’s function is related to a propagator U(R, τ) with
Θ(τ)U(R, τ) = G(R, τ), and the propagator can be used to solve the homogeneous equation
with initial conditions, but it is rather more fiddly than in the diffusion case so we won’t give
details here.

2.3.5 Helmholtz’s equation

For a given source, we find the solution to the wave equation by integrating:

ψ(r, t) =

∫
d3r′

∫ t

−∞
dt′GW (r− r′, t− t′) ρ(r′, t′) (2.69)

(where GW denotes the GF of the wave equation). However if we have an oscillatory source,
ρ(r)e−iωt, the steady-state solution will also have the form ψ(r)e−iωt, and by imposing this right
at the start we would be left with the (time-independent) Helmholtz equation

−∇2ψ(r)− k20ψ(r) = ρ(r), (2.70)

where k0 = ω/c.
It therefore follows that if Gk0(R) is the GF of the Helmholtz equation,∫ t

−∞
GW (R, t− t′)e−iωt′ dt′ = e−iωtGω/c(R) (2.71)

If for definiteness we work in 3D, GW is given by Eq. (2.63), so

1

4πR

∫ t

−∞
dt′δ(t− t′ −R/c)e−iωt′ =

eiω(R/c−t)

4πR
= e−iωt

eiωR/c

4πR

⇒ Gk0(R) =
eik0R

4πR
; (2.72)

(note δ(t− t′ −R/c) = δ(t′ − (t−R/c)) so the integral always picks up the δ-function).
We should be able to obtain this Green’s function (for the rest of the section, just G(R)

without the label) directly from Eq. (2.70); since there is no time dependence it looks easier
than the cases we have already considered. We work with the Fourier transform G̃(K) giving

LRG(R) =
1

(2π)n

∫
eiK·R(K2 − k20)G̃(K)dnK =

1

(2π)n

∫
eiK·RdnK , (2.73)
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Figure 2.2: One possible contour choice for the principal value integration.

where the extreme RHS is a representation of the δ function. Hence we read off

G̃(K) =
1

K2 − k20
and G(R) =

1

(2π)n

∫
eiK·R

K2 − k20
dnK . (2.74)

In fact we could have written the last expression down directly since it is an eigenfunction
expansion, albeit integrated rather than summed because the eigenvalues are continuous. At
this point we have to specify n to continue, so we specify 3D.

The trick to evaluating the angular part of the integral is to choose the z-axis for the K
integration along R (K is a dummy variable and we can choose it as we wish); then K ·R =
KR cos θK and so

G(R) =
1

(2π)2

∫
eiKR cos θK

K2 − k20
K2 sin θKdθKdK =

1

iR(2π)2

∫ ∞
0

eiKR − e−iKR

K2 − k20
KdK (2.75)

The K-integral is of the kind we learned how to do in Complex Variables (see Fig. 2.2).
First we see that the integrand is even in K, so we extend the integration to −∞. We treat
each complex exponential separately; we note that as R > 0 Jordan’s Lemma is satisfied for
closure in the upper half plane for the first term and the lower half plane for the second term.
The only poles are simple poles on axis at K = ±k0 and we can either detour above or below,
including or excluding the poles from the contour but picking up a contribution from the small
semicircle of ∓ib1, b1 being the residue. Either way the full contribution from the first term∫ ∞

−∞

KeiKR

(K − k0)(K + k0)
dK = iπ

KeiKR

(K + k0)

∣∣∣∣
K=k0

+ iπ
KeiKR

(K − k0)

∣∣∣∣
K=−k0

= iπ cos k0R , (2.76)

and from the second, an equal contribution (remember a minus sign for the clockwise integral).
Thus the solution is

G(R) =
cos k0R

4πR
=

eik0R + e−ik0R

8πR
warning: not our final result. (2.77)

Let’s step back. This is a solution. We recognise it, when multiplied by e−iωt, as a sum of
spherical waves, one outgoing and one incoming. But in physical applications, we don’t want
a wave coming in “from infinity”, we want localised sources to generate disturbances that
travel outwards, as we discussed in section 2.2.4 above. How can we impose such a boundary
condition?
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Figure 2.3: Choice of pole position to obtain out-going waves.

The problem came from the type of integral we did: it was a principal-value integral. But
that is not the only possible definition of the integral past a pole on the real axis. Other pos-
sibilities imagine the poles being shifted infinitesimally off-axis, so that they are fully excluded
or included from the contour integration. By looking at the two terms in Eq. (2.76), we see
that the pole at K = k0 is the one we want to include; this is achieved by giving k0 a small
positive imaginary part: k0 → k0 + iε (see Fig. 2.3). Then we have

G(R) =
1

2iR(2π)2

(
2πi

KeiKR

(K + k0)

∣∣∣∣
K=k0+iε

− (−2iπ)
Ke−iKR

(K − k0)

∣∣∣∣
K=−k0−iε

)

⇒ G(r− r′) =
eik0|r−r

′|

4π|r− r′|
, (2.78)

where at the end, but not before, we have taken ε→ 0. This is the result we obtained from the
wave equation with a periodic source, Eq. (2.72)

This is a very powerful result: we determine the kind of solution we want by our treatment
of poles. Had we made the opposite shift k0 → k0− iε we would have obtained incoming waves.
The principal value condition corresponds to standing waves. This choice is not as arbitrary as
it seems: if k0 did have a small positive imaginary part, the outgoing wave would actually be
slightly damped and would continue to obey the boundary conditions at infinity, whereas the
incoming wave would grow exponentially with increasing R and so would not.

It should be noted that when this result is required the contour is often drawn with the poles
on axis and little circles around them, as in Fig. 2.2. But when that is done, the contributions
from the little circles is considered part of the desired integral, not subtracted off. Showing the
poles off-axis, as in the RH panel, is clearer but less common.

We could repeat the analysis in 2D but it is not so easy because the angular integral is more
involved (no sin θK in the integrand); we will not do so here. In 1D the result would be the one
we obtained previously by other methods, Eq. (2.36).

2.3.6 Wave Equation as (n+ 1)D Fourier transform

The essential symmetry of the wave equation with respect to space and time is obscured by the
solution method above. As an alternative we can write

G̃(K, ω) =

∫ ∞
−∞

∫
e−iK·R+iωτG(R, τ) dnR dτ , G(R, τ) =

1

(2π)n+1

∫
eiK·R−iωτ G̃(K, ω) dnK dω .

(2.79)
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In a method closely following the Helmholtz case, Eq. (2.74), we get

G(R, τ) =
1

(2π)n+1

∫
ei(K·R−ωτ)

K2 − ω2/c2
dnK dω , (2.80)

which is the eigenfunction representation; however unlike the Helmholtz case we have an integral
over ω as well, rather than a fixed k0 = ω/c; this allows for non-harmonic sources.

We can perform the K integral first (see Eq. (2.78)) to obtain as before

G(R, τ) =
1

8π2R

∫ ∞
−∞

eiω(R/c−τ)dω =
1

4πR
δ(τ −R/c) . (2.81)

It is more conventional though to perform the ω integral first. Comparing Eq. (2.80) with
(1.82) and focusing on the ω integral in each, we see that we get the right result if we allow
a small damping term which we then take to zero, which is equivalent to assigning a small
negative imaginary part to ω. Equivalently we shift the contour to lie just above the real axis
(see Fig. 2.4). Then the poles are only included when the contour is closed in the lower-half
plane, as required when τ > 0, and causality is respected.

We now have two derivations of the wave equation Green’s function. The first imposed
forward propagation in time explicitly, via the solution to the 1D Helmholtz equation in time
subject to G and its derivative vanishing for t < t′, Eq. (2.34). The second shifted poles to pick
up only outgoing waves. Hopefully their equivalence will help to convince you of the validity
of the latter method!

2.3.7 The free Schrödinger equation and the Born approximation

The time-dependent free Schrödinger equation looks just like the diffusion equation and in
spite of the very different physics can be treated in the same way mathematically, with the
replacement D → i~/2m. The free propagator was briefly covered in Maths fundamentals of
QM (section 3.3.2). Here we are going to look at the time-independent equation, for which the
free case,

− ~2

2m
∇2ψ − Eψ = 0, (2.82)

is just the Helmholtz equation with k20 = 2mE/~. We will just call it k from now on; ~k =
p. Here E is not being treated as an eigenvalue but as an externally-determined parameter
(the energy of an incident particle in a scattering experiment). One set of solutions of the
free homogeneous equation in 3D are just eik·r where k can be in any direction; solutions



corresponding to spherical waves can be built out of spherical harmonics and spherical Bessel
functions.

Of course the interesting case is not the free one, but with a potential, and for the general
case the full GF will be hard to obtain. Consider instead a localised, weak potential V (r),
vanishing outside some range r > a. Consider too a wave function which consists of a plane
wave (ψ) incident on the potential, and a scattered wave (φ) which would be absent in the
absence of V (r), and which is small compared to the plane wave. The full solution is Ψ = ψ+φ.
Hence the full Schrödinger equation can be approximated in first-order perturbation theory as

− ~2

2m
∇2Ψ(r)− EΨ(r) = −V (r)Ψ

⇒ − ~2

2m
∇2φ(r)− Eφ(r) = −V (r)Ψ(r) ≈ −V (r)ψ(r) , (2.83)

where we have used the fact that ψ satisfies the homogeneous equation Ĥ (0)ψ = 0 to drop it
from the LHS.

As an equation for the scattered wave φ, this is of the form Ĥ (0)φ = ρ, where the plane
wave interacting with the potential acts as a source. And so we can immediately write down
the solution using the free Green’s function Eq. (2.78),

φ(r) =− 2m

~2

∫
G(r, r′)V (r′)ψ(r′) d3r′ = −2m

~2

∫
G(r, r′)eiki·r′V (r′) d3r′

=− 2m

~2

∫
eik|r−r

′|

4π|r− r′|
eiki·r′V (r′) d3r′ , (2.84)

where ki is the wave vector of the incoming plane wave.
We are interested in the solution at the location of our detector, well away from the (lo-

calised) potential, so we can Taylor-expand |r− r′| ≈ r − r̂ · r′ for r � r′ to obtain

φ(r) =− eikr

r

m

2π~2

∫
ei(ki−kr̂)·r′V (r′) d3r′

≡eikr

r
f(θ, φ) where f(θ, φ) = − m

2π~2

∫
eiq·r

′
V (r′) d3r′ . (2.85)

If we define kr̂ as kf , the wave vector of a plane wave travelling from the source to the detector at
r, then q = ki−kf is the momentum transfer between the incoming and scattered wave. (θ, φ)
are the scattering angles, defined by the angle between the beam and the detector position.
The scattered wave is an outgoing spherical wave eikr/r moderated by an angle-dependent
scattering amplitude f(θ, φ) whose square is the differential cross section. This expression for
the scattered wave, valid at first order in perturbation theory, is called the Born approximation.
For more details on scattering see here.

If we do not replace the full wave function by the free one in the “source” term of Eq. (2.83),
we can instead write

Ψ(r) = ψ(r)− 2m

~2

∫
G(r, r′)V (r′)Ψ(r′) d3r′. (2.86)

We see that the unknown Ψ occurs on both sides of the equation, and we need new methods
to solve it. It is an example of an integral equation, which is the topic of the next section. One
method of solution is iterative, akin to perturbation theory, in which φ calculated in the Born

http://theory.physics.manchester.ac.uk/~judith/AQMI/PHYS30201se21.xhtml


approximation is substituted for Ψ in the integral to obtain a second-order correction, and that
in turn is used to obtain a third-order correction, and so on. This is called the Neumann series
for Ψ, see section 3.4. But if the potential is not weak, or indeed if we seek the bound-state
solutions (in which case ψ is absent as there are no free solutions with negative kinetic energy,
and E is again an eigenvalue to be determined), then other methods will be needed.



3. Integral Equations

3.1 Introduction

Arfken 21

Riley 23

In the previous section we solved equations of the form Ly(x) = f(x) with an expression

of the form y(x) =
∫ b
a
G(x, z)f(z)dz. We are used to thinking of L as a (differential) operator

acting on y, but equally G(x, z) is an (integral) operator acting on f . Indeed LG(x, z) = δ(x−z)
suggests that the operators are in some sense one another’s inverses. Though usually f is known,
if instead y is known this becomes an integral equation for f : the question becomes “what source
will produce this specified effect”?1

In this section we will consider integral operators of this form that are not necessarily Green’s
functions of differential operators. We define a kernel to be a function of two variables, K(x, z),

and define its operation on a function u as Ku(x) ≡
∫ b
a
K(x, z)u(z)dz. Like the differential

operators we have considered, K is a linear operator:

K(au(x) + bv(x)) = aKu(x) + bKv(x) . (3.1)

Note we could more carefully write Ku(x) as (Ku)(x), (it is u(z) that enters) but we won’t be
that pedantic.

We can also consider

〈v|Ku〉 =

∫ b

a

v∗(x)

(∫ b

a

K(x, z)u(z)dz

)
dx (3.2)

and determine if it equals 〈u|Kv〉∗; if so it is a Hermitian operator. In general

〈v|Ku〉 =

∫ b

a

v∗(x)

(∫ b

a

K(x, z)u(z)dz

)
dx

=

∫ b

a

∫ b

a

v∗(x)u(z)K(x, z)dz dx

=

∫ b

a

∫ b

a

v∗(z)u(x)K(z, x)dx dz

=

(∫ b

a

u∗(x)

(∫ b

a

K∗(z, x)v(z)dz

)
dx

)∗
. (3.3)

where in the third line we simply swapped dummy variables x and z. Thus a sufficient condition
for Hermiticity of K is K∗(z, x) = K(x, z) or, for real functions, simply the symmetry condition

1When considering integral equations for their own sake though, the roles of y and f will be reversed; the
known function will usually be denoted f and may be called the source, while the unknown function to be
determined may be called y or u.
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K(z, x) = K(x, z). We recall that Hermitian differential operators do have Hermitian Green’s
functions, as is obvious from the eigenfunction expansion (recall the eigenvalues λn are real):

G(x, z) =
∑
n

φn(x)φ∗n(z)

λn
= G∗(z, x) . (3.4)

Note that there is no extra boundary condition requirement for the Hermiticity of integral
operators.

An integral equation for the unknown function (solution) y(x) has the form Ky(x) = f(x),
or ∫ b

a

K(x, z)y(z)dz = f(x). (3.5)

This is called a Fredholm equation of the first kind.
A general K(x, z) might include an additive term proportional to δ(x − z) for which the

integration is trivial; reserving the term kernel for the non-trivial part gives an equation of the
form

y(x) = f(x) + λ

∫ b

a

K(x, z)y(z)dz (3.6)

(the point of the explicit λ will become apparent in a moment) and this is called a Fredholm
equation of the second kind. (Similarly, differential equations may have a q(x)y(x) term in
them, as well as derivatives of y.)

Both types of Fredholm equation have fixed limits. Volterra equations of the first and second
form replace the upper limit with x:∫ x

a

K(x, z)y(z)dz = f(x) or y(x) = f(x) + λ

∫ x

a

K(x, z)y(z)dz (3.7)

Fredholm equations of the second kind can be homogeneous (f = 0). We will be almost
exclusively concerned with equations of the second kind in what follows.

Some integral equations are equivalent to differential equation. Consider for instance the
following Volterra equation of the second kind

y(x) = 1 + x2 +

∫ x

0

y(z) dz . (3.8)

(unit kernel and f(x) = 1 + x2). Note that we can immediately tell one thing about y: since
lim
x→0

∫ x
0
y(z) dz = 0, we have y(0) = 1. We can differentiate wrt x to give:2

y′(x) = 2x+ y(x) ⇒ y′(x)− y(x) = 2x . (3.9)

This can be solved either with the integrating factor e−x, or with the complementary function
(solution of the homogeneous equation) cex and a particular integral of the form ax+ b which
works if a = b = −2 (see A.3). Either way we get

y = −2− 2x+ 3ex (3.10)

where c = 3 is required to give y(0) = 1. We can easily check this solution by substituting back
into the original integral equation.

2If this step isn’t obvious to you, check section A.2.
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Although not all integral equations can be recast as differential equations, all linear differ-
ential equations can be turned into integral equations. For example if we start with
y′′(x) + k2y(x) = f(x) with bcs y(0) = y′(0) = 0, we can integrate twice. We will need the
identity (obtained by integrating over a triangular region in the xy plane, see figure 3.1)∫ a

0

(∫ y

0

f(x)dx

)
dy =

∫ a

0

(∫ a

x

dy

)
f(x)dx =

∫ a

0

(a− x)f(x)dx. (3.11)

Then

y′′(x) + k2y(x) = f(x) (3.12)

⇒ y′(x) +

∫ x

0

(
k2y(z)− f(z)

)
dz + A = 0

⇒ y(x) +

∫ x

0

(∫ x′

0

(
k2y(z)− f(z)

)
dz

)
dx′ + Ax+B = 0

⇒ y(x) + k2
∫ x

0

(x− z)y(z)dz =

∫ x

0

(x− z)f(z)dz − Ax−B , (3.13)

but though we have introduced constants A and B we see that the boundary conditions require
them both to be zero. Hence we have an integral equation

y(x) + k2
∫ x

0

(x− z)y(z)dz = g(x) where g(x) =

∫ x

0

(x− z)f(z)dz . (3.14)

Since the source f of the differential equation is known, that of the integral equation, g, is also
known.

The form found above should not be a surprise. The Green’s function of Ly ≡ −y′′ subject
to y(0) = y′(0) = 0 is just G(x, z) = Θ(x− z)(z − x). So the solution to −y′′ = −f + k2y is

y(x) =

∫ ∞
0

G(x, z)
(
k2y(z)− f(z)

)
dz =

∫ x

0

(z − x)
(
k2y(z)− f(z)

)
dz. (3.15)

We chose initial conditions for our explicit demonstration above. Life would have been harder
if we’d chosen y(0) = y(a) = 0. But the Green’s function method gives the solution:3 given

G(x, z) =
1

a

(
(a− z)xΘ(z − x) + (a− x)zΘ(x− z)

)
, (3.16)

3See the second examples sheet; qu 1 in 2021.



we obtain the equation

y(x) =

∫ a

0

G(x, z
)
(k2y(z)− f(z)

)
dz . (3.17)

From the above we see a connection between Volterra integral equations and initial value
problems, and between Fredholm integral equations and separated boundary problems (but
recall not all integral equations are equivalent to differential equations.)

Just as there are differential eigenfunction problems, so there are integral ones. From the
problem considered above, the equivalence of some forms is clear: setting f = 0 in Eq. (3.17)
and regarding k2 as the eigenvalue of Ly = −y′′, we have

− y′′ = k2y ⇒ y(x) = k2
∫ a

0

G(x, z)y(z)dz . (3.18)

Hence by convention we write integral equation eigenvalue problems as y = λKy rather than
Ky = λy. We can always convert to the more natural form by dividing by λ. (Note λ = 0
implies y = 0 which is not considered an eigenfunction, so λ is always non-zero.)

Eigenvalue problems are homogeneous Fredholm equations of the second kind. The equiv-
alent Volterra problem has no solution. Consider

y(x) = λ

∫ x

0

K(x, z) y(z)dz , (3.19)

then we can show (assuming a differentiable kernel and solution) that y(0) = 0, y′(0) =
K(0, 0)y(0) = 0, . . ., ie y(x) = 0.

In exactly the same way as for integral operators, we can show that the eigenvalues of a
Hermitian integral operator are real4 and the (non-degenerate) eigenfunctions are orthogonal;
furthermore for a real kernel the eigenfunctions can also be taken to be real. We will have more
to say about this in section 3.3.

3.2 Special methods of solution

The first solution method is the one we used above: if differentiation once or twice will convert
the integral equation to a differential one, it is worth checking if we can solve it that way; we
already have a lot of experience in solving differential equations. For this to work, repeated
differentiation has to get rid of the integral; this will work either if the kernel is a low-order
polynomial in x (as in (3.8)), or if the kernel is unchanged (an exponential or sine or cosine) in
which case the original form of the equation can be used to eliminate the integral. The resulting
ODE will of course have undetermined constants, but an appropriate number of boundary
conditions will be implicit in the integral equation. Of course there are many differential
equations that we won’t recognise, and in general numerical methods are more stable for the
original integral equation: discretisation or expansion in some appropriate basis converts the
integral equation to a matrix inversion problem, for which efficient algorithms exist.

A simple example is the Volterra equation

y(x) = 1 +

∫ x

0

ez−xy(z)dz. (3.20)

4The form Kyn = (1/λn)yn is the most useful starting point.



We note that y(0) = 1. Then differentiating gives

y′(x) = ez−xy(z)|z=x −
∫ x

0

ez−xy(z)dz = y(x)− (y(x)− 1) = 1. (3.21)

to which the solution that obeys the initial condition is just y = 1+x. (If two differentiations are
needed, the first will provide an initial condition on y′(0), so the solution is still fully specified.)

3.2.1 Displacement kernels and integral transforms

In some cases, integral equations can be solved via integral transforms. If the kernel is a function
only of the difference of the arguments, K(x, z) = K(x− z), Ky has the form of a convolution
if the limits on the integration are appropriate. Such a kernel is called a displacement kernel.
For instance for the Fredholm equation

y(x) = f(x) + λ

∫ ∞
−∞

K(x− z)y(z)dz ⇒
(

1− λK̃(k)
)
ỹ(k) = f̃(k) (3.22)

where ỹ(k) is the Fourier transform of y(x) etc. (Depending on the distribution of factors of 2π
in the transform and inverse transform, λ might change by a factor of 2π in the transformed
equation.) If the IFT of f̃(k)/(1 − λK̃(k)) can be found, the problem is solved. Note that if
the kernel and the source terms share a symmetry under x → −x, problems with integration
limits 0 and ∞ can be can be rewritten in the form above and hence may also be amenable to
solution by this method.

Similarly for the following Volterra equation we can use the Laplace transform:

y(t) = f(t) + λ

∫ t

0

K(t− z)y(z)dz ⇒ (1− λK̃(s))ỹ(s) = f̃(s) (3.23)

where ỹ(s) is now the Laplace transform of y(t) etc. (The finite limits arise from the fact that
Laplace transforms are conducted on functions that are assumed to vanish for t < 0.)

For example, consider

y(t) = t− k2
∫ t

0

(t− z)y(z)dz (3.24)

Two differentiations will convert this to a (familiar) differential equation, but instead we can
use Laplace transforms and note that the integral is the convolution of t and y(t):

ỹ(s) =
1

s2
− k2 1

s2
ỹ(s) ⇒ ỹ(s) =

1

s2 + k2
⇒ y(t) =

1

k
sin kt. (3.25)

As a bonus we did not have to worry about boundary conditions, though we can quickly check
y(0) = 0 (and for that matter y′(0) = 1).

Integro-differential equations contain derivatives of y as well as Ky; if the kernel and limits
are appropriate, Laplace transforms can also be used for these (see section 1.6.2 for the L.T. of
derivatives).

3.2.2 Separable kernels

In some cases the kernel is a product of functions of x and z only, or a sum of such terms:
K(x, z) =

∑N
i=1 gi(x)hi(z); such kernels are called separable or degenerate. An example would



be xz2 or, less obviously, cos(x − z) = cosx cos z + sinx sin z. The advantage of this kind of
kernel is that the terms gi(x) are not affected by the integration, and hence suggest the form
of the solution. It turns out that we can reduce the integral equation to a system of algebraic
equations, which is a great simplification.

If the kernel of a Fredholm equation of the second kind is separable, we have

y(x) = f(x) + λ

∫ b

a

( N∑
j=1

gj(x)hj(z)
)
y(z)dz

= f(x) + λ

N∑
j=1

gj(x)

∫ b

a

hj(z)y(z)dz

= f(x) + λ
N∑
j=1

cjgj(x) (3.26)

where the numbers ci are just constants, albeit not yet known.
We can now find an N × N matrix equation for the vector of coefficients c = (c1, c2....).

First, let us define, along with ci =
∫ b
a
hi(z)y(z)dz,

fi =

∫ b

a

hi(z)f(z)dz and Kij =

∫ b

a

hi(z)gj(z)dz, (3.27)

If we now multiply Eq. (3.26) by one of the hi(x) and integrate, we get∫ b

a

hi(x)y(x)dx =

∫ b

a

hi(x)f(x)dx+ λ
N∑
j=1

cj

∫ b

a

hi(x)gj(x)dx

⇒ ci = fi + λ
N∑
j=1

Kijcj. (3.28)

There are N such equations, which can be written together in matrix form:

c = f + λKc

⇒ c = (I− λK)−1f . (3.29)

Having found the ci, we return to Eq. (3.26) to obtain y(x).
If the equation is homogeneous, f(x) = 0, we have

c = λKc ⇒ Kc = λ−1c or equivalently K−1c = λc. (3.30)

which has a solution if λ is an eigenvalue of the kernel, λn. These are the reciprocals of the
eigenvalues of K, and the corresponding cn are the eigenvectors. (Equivalently, λn and cn are
the eigenvalues and eigenvectors of K−1.)

Even if the equation is inhomogeneous, f(x) 6= 0, we will run into trouble if λ is an eigen-
value, λ = λn, because in that case the matrix (I − λnK) cannot be inverted. Then as usual
there will be either no solution or infinitely many solutions depending on whether an expansion
of f in the eigenvectors cm has a coefficient of the problematic cn or not. For more on linear
systems of algebraic equations, and the existence and uniqueness of their solutions, see section
A.5.



As an example, consider the integral equation

y(x) = 1− x+
2

π

∫ π/2

0

cos(x− z)y(z)dz (3.31)

where K(x, z) = cos(x − z) = cosx cos z + sinx sin z, so h1 = g1 = cos x and h2 = g2 = sin x.
f(x) = 1− x and λ = 2/π. We can construct the matrix K :

K =
1

4

(
π 2
2 π

)
; (3.32)

its (conventional) eigenvalues are (π± 2)/4 with eigenvectors (1,±1). The homogeneous equa-
tion (f(x) = 0) would only have solutions for λ = 4/(π ± 2). For the inhomogeneous equation
with any other λ, we can solve straightforwardly. In this case f = (2− π/2, 0), so

(I− λK)−1 =
2π

π2 − 4

(
π 2
2 π

)
⇒ c =

π(4− π)

π2 − 4

(
π
2

)
. (3.33)

So finally we have

y(x) = (1−x)+
2

π

∫ π/2

0

cos(x−z)y(z)dz ⇒ y(x) = (1−x)+
2(4− π)

π2 − 4
(π cosx+2 sinx).

(3.34)
Returning to the homogeneous equation, we see that we will have as many eigenvalues as

there are independent terms in the separable kernel, N . This is very different from differential
equations where there are usually infinitely-many eigenvalues. In this case the eigenfunctions
are (1,±1) · (cosx, sinx) = cosx ± sinx which can also be written (up to a normalisation) as
sin(x+ π

4
) and cos(x+ π

4
).

3.3 Hilbert-Schmidt theory

In this section, we consider Fredholm problems on the interval x ∈ [a, b] with Hermitian kernels
K∗(z, x) = K(x, z) which are bounded, ie∫ b

a

∫ b

a

|K(x, z)|2 dx dz <∞ (3.35)

As we have already noted, the eigenvalue equation

φ(x) = λ

∫ b

a

K(x, z)φ(z)dz (3.36)

will have one or more real eigenvalue λn and eigenfunction φn, and non-degenerate eigenfunc-
tions are orthogonal on [a, b]. We have already discussed these for the particular case of N -term
separable kernels, for which there were only N eigenfunctions. We will also use the notation
φn(x) = λnKφn(x).

We need to introduce the concept of source-resolvable functions. A function f(x) is source-
resolvable relative to a particular kernel if some function ρ(x) exists such that

f(x) =

∫ b

a

K(x, z)ρ(z)dz. (3.37)



This can be a pretty strong constraint. For instance for an N -term symmetric separable kernel∑N
i=1 hi(x)hi(z), only functions f(x) =

∑N
n=1 cnhn(x) are source-resolvable; for the example

with K = cos(x− z), the only source-resolvable functions have the form A cos(x+ α).
A basic result of Hilbert-Schmidt theory is that source-resolvable functions can be expanded

in terms of the normalised eigenfunctions φn:

f(x) =
N∑
n=1

fnφn(x) where fn = 〈φn|f〉. (3.38)

This is a (possibly finite-dimensional) version of completeness. Then we can write

K(x, z) =
∑
n

φn(x)φ∗n(z)

λn
(3.39)

which clearly satisfies λmKφm(x) = φm(x).
Consider again the example above, K(x, z) = cos(x − z) = cosx cos z + sin x sin z, with

integration limits 0 and π/2. We showed already that the eigenvalues are 4
π∓2 and the normalised

eigenfunctions are
√

4
π−2 cos(x+ π

4
) and

√
4

π+2
sin(x+ π

4
). (Slightly confusingly the squares of

the normalisation constants and the eigenvalues are equal!) It takes only a line to verify that
the eigenfunction expansion reproduces the original kernel:

K(x, z) =
4

π−2 cos(x+ π
4
) cos(z + π

4
)

4
π−2

+
4

π+2
sin(x+ π

4
) sin(z + π

4
)

4
π+2

= cos(x− z). (3.40)

It should be noted that the discussion above, about the properties of the eigenvalues and
eigenfunction, does not help us actually find them. But if we have found them, we can also
solve inhomogeneous equations with the same kernel and source f(x). We can write

f(x) =
∑
n

fnφn(x) + u(x) and y(x) =
∑
n

ynφn(x) + v(x), (3.41)

where u(x) and v(x) are the “remainders”, the parts of f and y respectively which are orthogonal
to all eigenfunctions (if the number of the latter is finite; otherwise u = v = 0). Then the
equation reads

y(x) = f(x) + λ

∫ b

a

K(x, z)y(z)

⇒
∑
n

ynφn(x) + v(x) =
∑
n

fnφn(x) + u(x) + λ

∫ b

a

∑
n

φn(x)φ∗n(z)

λn

(∑
m

ymφm(z) + v(z)
)

dz

=
∑
n

fnφn(x) + u(x) + λ
∑
n,m

φn(x)

λn
ymδnm

⇒ yn = fn +
λ

λn
yn and v(x) = u(x)

⇒ yn =
λn

λn − λ
fn =

(
1 +

λ

λn − λ

)
fn

⇒ y(x) = f(x) +
∑
n

λ

λn − λ
〈φn|f〉 φn(x). (3.42)



In line three we used (by definition) 〈φn|u〉 = 0 for all n, then in the last line we added
u(x)(= v(x)) to both sides to give the full f(x) and y(x). The final line has therefore lost all
reference to the remainders, and thus they do not need to be identified separately.5 Clearly the
final expression for y(x) needs some care if λ equals one of the eigenvalues; in fact, in a fashion
which should by now be familiar, if λ = λm there is no solution unless 〈φm|f〉 = 0. In that case
we can add any multiple of φm(x) to the solution, which is therefore not unique.

We can rewrite the solution as

y(x) = f(x) + λ

∫ b

a

∑
n

φn(x)φ∗n(z)

λn − λ
f(z)dz ≡ f(x) + λ

∫ b

a

R(x, z;λ)f(z)dz , (3.43)

where this defines the resolvent kernel R(x, z;λ).6 This plays a similar role for the operator
λK as the Green’s function does for L: given any source, we can construct the solution by
integration.

Taking a simpler example than before, let’s consider

y(x) = f(x) + λ

∫ 1

0

xz y(z)dz , (3.44)

which is has a one-term symmetric separable kernel K(x, z) = xz The only source-resolvable
function with this kernel is multiple of x, so we guess x must be an eigenfunction (the only

one) and indeed
∫ 1

0
xz zdz = 1

3
x: the corresponding eigenvalue is λ1 = 3. The normalised

eigenfunction is φ1(x) =
√

3x. Then we can check that φ1(x)φ1(z)/λ1 = K(x, z), and write the
resolvent kernel as

R(x, z;λ) =
3xz

3− λ
. (3.45)

The solution for any given source, for λ 6= 3, can be found easily from this:

y(x) = f(x) + λ

∫ 1

0

3xz

3− λ
f(z)dz . (3.46)

For the rather simple case of f = x,

y(x) = x+
3xλ

3− λ

∫ 1

0

z2dz = x

(
1 +

λ

3− λ

)
=

3x

3− λ
. (3.47)

If we rearrange the equation in which the resolvent kernel was defined, we obtain

f(x) = y(x)− λ
∫ b

a

R(x, z;λ)f(z)dz , (3.48)

which is another integral equation, this time for f with a source y, and with kernel −R(x, z;λ).

5It is common to see textbooks which assume that the φn are infinite in number and hence complete, so that
the remainders u and v never enter. Then the first example they do is a 2D one, which miraculously works....

6Riley has the same definition for the resolvent kernel as us; in Prof Walet’s notes the definition differs by
an overall minus sign. Arfken does not use the term. A web search suggests both definitions are in use. The
other definition has the advantage that R, not −R, is the kernel of the integral equation (3.48) for f in terms
of y.



3.4 Neumann series: perturbation theory

It is not usually possible to find exact solutions or resolvent kernels for most integral equations.
An interesting case is where λ is a small parameter. In that case we can write our solution as
a power series in λ, and calculate it to any desired level of accuracy. To start with we consider
Fredholm equations (fixed integration limits).

Obviously a zeroth-order approximation to y(x), denoted y(0), is just the source, f(x),
which is what we get if we set λ = 0. A first-order correction is obtained by replacing λKy
by λKy(0) = λKf , and so on. We then treat λ as a free parameter and match powers of λ on
either side of the equation, as follows:7

y = f + λKy

⇒ y(0) + λy(1) + λ2y(2) + . . . = f + λK(y(0) + λy(1) + λ2y(2) + . . .)

⇒ y(0) = f, y(1) = Ky(0), y(2) = Ky(1), . . .

⇒ y(n) = Ky(n−1) = Knf

⇒ y =
∞∑
n=0

(λK)nf (3.49)

Thus we also have a neat expression for the resolvent kernel, R =
∑∞

n=1 λ
n−1Kn. To use,

though, this needs some unpacking. What do we even mean by K2f? It’s simple but a little
messy:

Kf(x) =

∫ b

a

K(x, z)f(z) dz

⇒ K2f(x) =

∫ b

a

K(x, z′)

(∫ b

a

K(z′, z)f(z) dz

)
dz′

=

∫ b

a

(∫ b

a

K(x, z′)K(z′, z)dz′
)
f(z) dz ≡

∫ b

a

K2(x, z)f(z) dz (3.50)

and by extension,

Knf(x) =

∫ b

a

Kn(x, z)f(z) dz, (3.51)

where

Kn(x, z) =

∫ b

a

∫ b

a

. . .

∫ b

a

∫ b

a

K(x, zn−1)K(zn−1, zn−2) . . . K(z2, z1)K(z1, z) dzn−1 dzn−2 . . . dz2 dz1 ,

=

∫ b

a

K(x, z′)Kn−1(z
′, z)dz′ (3.52)

with n terms and n − 1 integrals over dummy variables z1, z2 . . . zn−1. (This matches the
definition of K2 if we define K1 = K.) Then the solution is written

y(x) = f(x) +
∞∑
n=1

λn
∫ b

a

Kn(x, z)f(z) dz. (3.53)

7Prof Walet’s notes approach this in a slightly different, but equivalent, fashion. The current approach is
closer to Riley and Arfken. Past exams may reflect the previous approach in their wording.



Though we found an exact solution above, let us consider again

y(x) = x+ λ

∫ 1

0

xz y(z) dz , (3.54)

this time as a perturbation expansion. We can construct

K2(x, z) =

∫ 1

0

xs sz ds = 1
3
xz; K3(x, z) =

∫ 1

0

xsK2(s, z)ds = 1
9
xz , (3.55)

and so on, so that Kn(x, z) = K1(x, z)/3
n−1 and

y(x) = x+
∞∑
n=1

λ

(
λ

3

)n−1 ∫ 1

0

xz z dz = x

(
1 +

∞∑
n=1

(
λ

3

)n)
=

x

1− λ
3

(3.56)

which is the same as before. Of course the main purpose of this method is for cases where the
solution cannot be found in closed form, but only evaluated up to some chosen order in λ.

We have written the power series as if it exists; in fact so long as K is bounded and λ
satisfies

|λ|2
∫ b

a

∫ b

a

|K(x, z)|2dx dz < 1 (3.57)

then the series is guaranteed to converge. For this case the series does not converge for λ > 3,
but the resummed series gives the correct answer for any λ 6= 3.

In fact we already met an example of first-order perturbation theory with the Born approx-
imation to the Schrödinger equation for scattering from a localised potential; a slight difference
is that the solution of the homogeneous equation, rather than a source, acted as the zeroth-order
approximation.

The analysis above carries over to Volterra equations, with a lot more care in the construc-
tion of Kn(x, z). We have

y(0)(x) = f(x); y(1)(x) =

∫ x

0

K(x, z)f(z)dz; y(2)(x) =

∫ x

0

K(x, z′)

(∫ z′

0

K(z′, z)f(z)dz

)
dz′

(3.58)
but we can’t yet write the last equation in terms of a single integral involving some K2(x, z).
However we can swap the order of integration over the triangle (c.f. (3.11)) giving

y(2)(x) =

∫ x

0

K(x, z′)

(∫ z′

0

K(z′, z)f(z)dz

)
dz′

=

∫ x

0

(∫ x

z

K(x, z′)K(z′, z)dz′
)
f(z) dz ≡

∫ x

0

K2(x, z)f(z) dz (3.59)

By the same token, if we assume the existence of a Kn, we can write

y(n+1)(x) =

∫ x

0

(
K(x, z′)

∫ z′

0

Kn(z′, z)f(z)dz

)
dz′

=

∫ x

0

(∫ x

z

K(x, z′)Kn(z′, z)dz′
)
f(z) dz ≡

∫ x

0

Kn+1(x, z)f(z) dz. (3.60)



Since this holds for n = 1, by induction it holds for any n.
An example, more details of which are on the examples sheet, is the problem

y(x) = f(x) + λ

∫ x

0

ex−zy(z) dz. (3.61)

Now

K2(x, z) =

∫ x

z

ex−z
′
ez
′−zdz′ = (x−z)ex−z, K3(x, z) =

∫ x

z

ex−z
′
(z′−z)ez

′−zdz′ = 1
2
(x−z)2ex−z

(3.62)
and in fact we can show that

Kn(x, z) =
(x− z)n−1

(n− 1)!
ex−z (3.63)

and so

R(x, z;λ) =
∞∑
n=1

λn−1Kn(x, z) = e(1+λ)(x−z). (3.64)

Again the existence of a closed form is not typical. This time the series converges for any
λ, as will always be the case (with a finite kernel) for Volterra equations. The reason is that
each successive integration in the chain that builds up Kn(x, z) is over a smaller and smaller
area of the zn − zn+1 plane, causing the magnitude to diminish with n.



4. Calculus of Variations

4.1 Introduction

Arfken 22

Riley 22

A common problem in physics is to find the function y(x) on an interval x ∈ [a, b] which
minimises some physical quantity which depends on y and/or its derivative y′ over the whole
length.1 Often the endpoints of y, y(a) and y(b), are specified. A simple example is the length
of the line on the xy plane between the points (0, 0) and (1, 1), where the length is given by∫ 1

0

√
dx2 + dy2 or equivalently

L[y] =

∫ 1

0

√
1 + (y′)2 dx. (4.1)

Allowed paths are all those which pass through the endpoints and are differentiable; in this
case we know that the straight line y = x will minimise the length and L[ymin] =

√
2.

The notation L[y], or more generally I[y], with square brackets, denotes a functional, a
number (in the sense of being independent of x) which depends on an entire function y(x) over
some range.

The condition that I[y] be a minimum gives rise to a second-order differential equation in
y which, together with the boundary conditions, is solved by the path ymin(x). We find this
by assuming the existence of the minimising path ymin(x) and considering paths which deviate
from it. Just as the sign of an extremum of a function is flatness (vanishing derivative) as a
function of x, so an extremum of a functional is signalled by the lack of variation of I[y] with the
path y (vanishing functional derivative). For instance if we consider the path y = x+ cx(1−x)
in the example above, the functional derivative reduces to a normal derivative wrt c, which is
indeed zero for c = 0.

ε η(  )xy(x)+

η(  )x

y(b)

x

y(x)

ba

y(a)

1In some texts, and past exam papers, the derivative dy
dx is denoted y,x. This is useful for the case of more

than one independent variable, where the derivative w.r.t the i-th variable can be written y,i, but we will only
briefly allude to such cases here.
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To find the form of the functional derivative, consider a path y(x) which satisfies the endpoint
constraints (boundary conditions) and another, η(x) for which η(a) = η(b) = 0; then y(x)+εη(x)
is another possible path for any arbitrary η(x). We allow the integrand of I[y] to depend
explicitly on x, y and the x-derivative of y, y′, and denote it F (y, y′, x). Then Taylor-expanding
in ε and dropping higher-order terms gives

I[y + εη(x)] =

∫ b

a

F
(
y + εη, y′ + εη′, x

)
dx

= I[y] + ε

∫ b

a

(
η(x)

∂F

∂y
+ η′

∂F

∂y′

)
dx

⇒ δI = ε

∫ b

a

η(x)

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+ ε

[
η
∂F

∂y′

]b
a

(4.2)

where in the last line we integrated by parts; the boundary term, included explicitly for future
reference, vanishes because η is zero at the boundaries.

Now the condition for y to be ymin is that dI/dε must vanish, so integral must vanish. But
as η is arbitrary the term it multiplies must vanish and we obtain the Euler equation:

d

dx

(
∂F

∂y′

)
− ∂F

∂y
= 0. (4.3)

Since F depends on y and y′, this will give a differential equation for y which is satisfied by
ymin(x). The solution may not be unique; there may be multiple solutions which are local or
global extrema. We always need to check that our solution actually is a global minimum.

We should note that d
dx

, unlike ∂
∂x

, picks up implicit dependence on x through y and y′, as
well as explicit dependence. So

d

dx
F (y, y′, x) =

∂F

∂x
+ y′

∂F

∂y
+

dy′

dx

∂F

∂y′
. (4.4)

Thus the Euler equation (multiplied by y′) can be rewritten

d

dx

(
F − y′∂F

∂y′

)
− ∂F

∂x
= 0. (4.5)

which is very useful if F has no explicit dependence on x, in which case we get the second form
of Euler’s equation

F − y′∂F
∂y′

= c. (4.6)

For the path-length problem with F =
√

1 + (y′)2, which has no explicit dependence on either
x or y, either form may be used; Eq. (4.3) gives

d

dx

y′√
1 + (y′)2

= 0 ⇒ y′√
1 + (y′)2

= c, (4.7)

which with some manipulation yields y′ =constant, or y = Ax + B. The boundary conditions
fix A and B.

Some relatively elementary problems covered in PHYS20401 are:



• Minimisation of the area (and hence surface energy) of soap films, particularly that be-
tween two coaxial hoops, for which the area element to be integrated is

A[y] =

∫ b

a

2πy
√

1 + (y′)2 dx; (4.8)

the solution is a catenary (hyperbolic cosine).

• The brachistochrone problem, whose solution is a cycloid: finding the shape of a wire that
minimises the time a frictionless bead takes to slide between two points under gravity,
where

t[y] =

∫ b

a

√
1 + (y′)2√

2g(y − y(a))
dx (4.9)

(the denominator being the velocity if the bead starts at rest).

• Finding the path light takes though a medium of variable refractive index, by minimising
the light travel time with

t[y] =

∫ b

a

n(x, y)

c

√
1 + (y′)2 dx. (4.10)

For the mirage problem the refractive index varies with height, n = n(y), since the air
closest to the hot ground is the least dense. A related problem asks about the light path
near a massive star or black hole.

• Finding the shortest path between two points on a curved surface.

• Hamilton’s principle says that the evolution of a mechanical system between two times
minimises the time integral of the Lagrangian; the resulting equations are usually called
the Euler-Lagrange equations in that context.

In the latter problems, we typically have more than one dependent variable, y1(x), y2(x), . . .
(for instance r(t), θ(t) and φ(t)) and we have one Euler equation for each:

d

dx

∂F

∂y′i
− ∂F

∂yi
= 0. (4.11)

Often “x” is time and the yi are coordinates of a system qi(t). If F doesn’t depend on one of
the coordinates itself, ∂F/∂yi = 0, then ∂F/∂y′i = 0 is a “constant of the motion”, typically an
(angular) momentum in mechanical problems.

It is also possible to have problems with more than one independent variable, x1, x2, . . . ).
The functional is obtained by integrating over all these variables, and the resulting Euler
equations then read (∑

i

d

dxi

∂F

∂yj,i

)
− ∂F

∂yj
= 0, (4.12)

where yj,i = dyj/dxi. When field theories are written in terms of Lagrangian, the fields are
functions of position and time and there are four independent variables. For a scalar field
corresponding to a particle of mass m, the free field Lagrangian (strictly, Lagrangian density
since it has dimensions of energy/volume) is (in units in which ~=c=1)

L =
1

2

(
∂Φ

∂t

)2

−∇φ · ∇φ− 1

2
m2Φ2 (4.13)



giving the Klein-Gordon wave equation for the field

∂2Φ

∂t2
−∇2Φ +m2Φ = 0. (4.14)

In this course we move on to more involved problems. For example if a heavy chain of
mass µ per unit length is suspended under gravity from two end-points, the curve it adopts
will minimise the potential energy

E[y] = −
∫ b

a

µgy
√

1 + (y′)2 dx; (4.15)

This looks just like the soap film problem. But it is not, because the chain has a definite
length which the soap-film solution will not in general respect. This problem is an example of
constrained minimisation. To see how to proceed, we will first look at constrained minimisation
for functions rather than functionals.

4.2 Constrained minimisation and Lagrange multipliers

Arfken 22.4

Riley 22.4

We have met problems of minimisation of functions subject to a constraint before, in sta-
tistical mechanics for instance. There, the method used was that of Lagrange multipliers, and
a reminder of the method can be found in A.6. For functionals, the same method can be used.

For the chain of length L0 we have

E[y] = −
∫ b

a

µgy
√

1 + (y′)2 dx L[y] =

∫ b

a

√
1 + (y′)2 dx , (4.16)

and the constraint on the path y(x) is L[y]−L0 = 0. Hence we will minimise E[y]+λ(L[y]−L0)
and impose the constraint as well as the endpoints to find our full solution.2 Our integrand is

F (y, y′, x) + λG(y, y′, x) = −µg(y − h)
√

1 + (y′)2 (4.17)

where µgh ≡ λ. The lack of dependence on x suggests the second form of Euler’s equation,

− (y − h)
√

1 + (y′)2 +
(y − h)y′2√

1 + (y′)2
= c . (4.18)

We can change variables to z = y− z, y′ = z′ to get a replica of the soap-film problem, and the
solution before we impose boundary conditions or constraints is

y(x) = h+ A cosh

(
x−B
A

)
. (4.19)

Now in the soap-film problem, y is the radius of the film at any given x, and y(a), y(b) are the
radii of the supporting hoops; they have a real influence on the solution. There is no constant
h so the endpoints fully specify the constants A and B. But for the chain, the absolute y is

2Since clearly the constant L0 doesn’t enter Euler’s equation, it is often in practice dropped so that the new
functional is E[y] + λL[y].



irrelevant and can be adjusted by changing h. Only the difference is physical, and that only
suffices to fix one combination of A and B. We are left with enough freedom to fix the length,
as required. If, for definiteness, we take b = L/3 = −a and y(a) = y(b), then B = 0, and
2A sinh(L/3A) = L fixes A = 0.205L.

For this problem there is no ambiguity about the interpretation of the solution, which is an
absolute minimum and guaranteed to exist so long as the endpoints aren’t further apart than
the length of the chain. The soap-film problem is actually more complicated; see textbooks.

The classic constrained-variation problem is the isoperimetric problem: what is the max-
imum area that can be enclosed by a fence of fixed length? The simpler version has fixed
endpoints, say (−a, 0) and (a, 0) and a fixed wall running along the x-axis, then the fence
follows a curve y(x) between those points to enclose an area with the wall. The area of course
is just A[y] =

∫ a
−a y(x)dx, and L[y] has the usual form. Then

F (y, y′, x) + λG(y, y′, x) = y + λ
√

1 + (y′)2. (4.20)

The lack of dependence on x suggests the second form of Euler’s equation; the two constants
of integration are naturally termed y0 and x0, and the solution is

(x− x0)2 + (y − y0)2 = λ2. (4.21)

The fence is an arc of a circle, radius λ. Symmetry sets x0 = 0, the endpoints give |y0| =√
λ2 − a2 and the centre of the circle is at (0,−|y0|). The length of the arc is 2λ arcsin(a/λ),

which fixes λ in terms of L, provided 2a < L < πa. The upper limit is required because
otherwise the curve y(x) would be double-valued for some x. Physically it would still be an
arc of a circle though. There is also a version of the isoperimetric problem for a closed curve,
which has a full circle as its solution; this will be covered in lectures if time permits.

These problems are relatively simple because the constraints are integral ones. It is also
possible to have a constraint that places restrictions on the path more locally, in the form
G(y, y′, x) = 0 for all x ∈ [a, b]. In that case we need to add to F a term λ(x)G(y, y′, x); effec-
tively we have a λ for each value of x at which we need to apply the constraint. With more than
one dependent variable yi there can be more constraints, λi. Examples of this type of problem
arise in Lagrangian mechanics if, rather than finding the minimal set of (perhaps contrived)
coordinates, we choose to use more obvious ones and apply a constraint. An advantage is that
the approach also yields the constraint forces which, though they do no work, keep the system
on the constrained path. Examples can be found in textbooks, but they do not in practice offer
a great simplification and I will not pursue them here.

4.3 Endpoints not fixed

Riley 22.3.4

In the above we assumed, as in the chain problem, that y(a) and y(b) are fixed, but this
restriction can be lifted. In particular consider y(a) fixed still, but with the other end subject
to some more complicated constraint: it might be that b is fixed but y(b) is not, which would be
the case if the end of the chain could slide on a vertical rod, or it might be that the endpoint lies
somewhere on a line given by the constraint v(x, y) = 0, for instance if the rod is not vertical,
or is not straight.

The algebra that follows is a bit involved, so it is important to signal at the outset that
the Euler equation, and hence the form of the solution, are the same as before. Only the
determination of the constants of integration from the endpoints changes.
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zδ 
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ε η(  )z

y(x)+ ε η(  )x
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zδ 

}

z
x

y(x)
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}

v(x,y)=0

y(z)

y(z)+

z+

If the problem is well posed, there will be some definite final end-point, which we will denote
(z, y(z)) (with v(z, y(z)) = 0), but we don’t know in advance what it is. As before we can define
the minimal curve ym(x) as the one for which the change in I[y] vanishes for small deviations
εη(x) and as before η(a) = 0. The difference is that η(z) 6= 0 and also the endpoint can move,
albeit only on the constraint curve. We denote a change in the endpoint as δz. We will need
the corresponding shift in the y value, as illustrated above,

δy = εη(z) + δz y′(z), (4.22)

and briefly using F (z) as a shorthand for F (y, y′, x) evaluated at x = z we have (dropping
terms with two small quantities such as εδz):

I[y + εη(x)] =

∫ z+δz

a

F
(
y + εη, y′ + εη′, x

)
dx

= I[y] + ε

∫ z

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+ F (z)δz

⇒ δI = ε

∫ z

a

η(x)

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+ ε

[
η
∂F

∂y′

]z
a

+ F (z)δz

= δIEuler +
(
δy − δz y′(z)

) ∂F
∂y′

∣∣∣∣
z

+ F (z)δz

= δIEuler + δy
∂F

∂y′

∣∣∣∣
z

+ δz

(
F (z)− y′(z)

∂F

∂y′

∣∣∣∣
z

)
. (4.23)

Compare to last time (the result of which is denoted δIEuler) we have extra terms from the
moving of the endpoint. For the minimal path, infinitesimal changes of the path between a and
z, and of the endpoint, must separately leave I[ym] unchanged, so the vanishing of the extra
terms forms a new constraint in addition to the Euler equation. We have not yet used the fact
that the endpoint is constrained by v(z, y(z)) = 0 so

dv = 0 ⇒ ∂v

∂z
δz +

∂v

∂y
δy = 0. (4.24)

Using this to write δy in terms of δz in Eq. (4.23) finally gives the the extra constraint which
must be satisfied at the endpoint x = z as

∂v

∂z

∂F

∂y′

∣∣∣∣
z

− ∂v

∂y

(
F (y, y′, z)− y′ ∂F

∂y′

∣∣∣∣
z

)
= 0. (4.25)



For the case that z is fixed at b and only y(z) can vary, we have v(z, y(z)) = z−b and ∂v/∂y = 0;
then the condition is just

∂F

∂y′

∣∣∣∣
b

= 0. (4.26)

For the case of the chain with one end free to slide on a vertical rod, F → F + λG =
−µg(y−h)

√
1 + (y′)2, the constraint yields (y−h)y′ = 0. Since the overall height of the chain

is clearly arbitrary, this requires y′ = 0, that is the chain is at right-angles to the rod. (In fact if
we substitute the form of the solution back in, we see that on the minimal path, ∂F/∂y′ ∝ y′.)
We could have guessed that on physical grounds, since any component of the tension not at
right-angles to the rod will cause the end to move up or down. The solution is

y(x) = h+ A cosh

(
x− b
A

)
, with L = A sinh

(
b− a
A

)
. (4.27)

For a tilted rod obeying mx+ c− y = 0, it can be shown straightforwardly that the boundary
constraint gives y′ = −1/m, so again the rod and chain are at right-angles. (Note that as
F + λG does not depend explicitly on x, the term in brackets multiplying ∂v/∂y is just a
constant (second form of Euler’s equation), here equal to −µgA.)

4.4 Rayleigh-Ritz variational technique

Arfken 22.4

Riley 22.6, 22.7

Here we show that Sturm-Liouville and Hilbert-Schmidt problems can be expressed as con-
strained variational problems. This leads to a useful method for estimating the lowest eigenvalue
of such problems, and sometimes certain higher eigenvalues too. This method is traditionally
used in quantum mechanics to obtain the approximate ground state energy (actually an upper
bound) for systems such as the helium atom which cannot be solved analytically.

Consider the problem of finding an extremum of the functional I[y] subject to the constraint
J [y] = 1, where

I[y] =

∫ b

a

p(x)y′(x)2 + q(x)y(x)2 dx and J [y] =

∫ b

a

ρ(x)y(x)2 dx, (4.28)

with y(a) and y(b) fixed. We will take p(x) and ρ(x) and q(x) to be positive and bounded.3

Setting δ(I[y]− λJ [y]) = 0 gives the Euler equation

− d

dx
(p(x)y′(x)) + q(x)y(x) = λρ(x)y(x). (4.29)

This is of course the Sturm Liouville (generalised) eigenfunction equation, where the parameter
−λ introduced as a Lagrange multiplier now plays the role of the eigenvalue (the sign being
chosen to agree with the conventional definition). J [y] is a normalisation condition; without it,
if y(a) = y(b) = 0, the minimum would just be y = 0 which is uninteresting.

3For a general SL equation we only required q(x) to be real, not positive. However we can always add Λρ(x)
to both sides of the eigenvalue equation (4.29), where Λ is a constant chosen large enough that q(x)+Λρ(x) > 0.
This defines an equivalent problem with the same eigenfunctions as the original one, and with all eigenvalues
simply increased by Λ. This also ensures that all eigenvalues are positive.



As in previous constrained variational problems, the introduction of a Lagrange multiplier
allows us to satisfy both the boundary conditions and the constraint. Similarly in SL problems
the eigenvalue has to be adjusted so that non-trivial (ie normalisable) solutions can be found
which satisfy the boundary conditions.

If, conversely, we start from the SL equation, multiply by y(x) and integrate from a to b,
we obtain∫ b

a

−y(x)
(
p(x)y′(x)

)′
+
(
q(x)− λρ(x)

)
y(x)2 dx = I[y]− λJ [y]− [p(x)y′(x)y(x)]ba. (4.30)

Boundary conditions on y(x) such that the boundary term vanishes (for example y(a) = y(b) =
0) are also sufficient to make the SL operator Hermitian.4 Assuming such conditions, for yn(x)
which is a solution of the SL equation for some λn, the integrand on the LHS will vanish and
so I[yn] = λnJ [yn].

Thus the extremal value of I[y] − λJ [y] is zero, and the constraint J [y] = 1 avoids the
uninteresting solution y = 0 and requires λ = λn, an eigenvalue. This extremum is obtained if
y = yn.

Now it turns out that we can cast this as an unconstrained extremisation problem of a new
kind. If we define λ[y] = I[y]/J [y], then λ[yn] = λn. But

δλ[y] =
δI

J
− IδJ

J2
=
δI − λ[y]δJ

J
(4.31)

so finding the stationary points of λ[y] is equivalent to the original constrained extremisation
problem: if a solution yn is found such that δλ[yn] = 0, then δ(I[yn] − λnJ [yn]) = 0 where λn
is an eigenvalue of the equivalent SL equation.

Now since p(x), q(x) and ρ(x) are all positive, λ[y] > 0; it is bounded from below. So there
must be an absolute minimum λ1, which is obtained for the true ground-state solution y1. All
the other extrema will be saddle-points in general.

Why is this interesting? Well first of all, we have shown that there is a minimum of λ[y],
and hence there is a minimum eigenvalue, something which we made plausible but did not
prove previously. Furthermore it follows that if we calculate λ[u] for an arbitrary function u,
λ[u] ≥ λ1, and equality implies that u = y1. If we do not know λ1, we can find an upper bound
by trying plausible functions which must however obey the boundary conditions. This is known
as the Rayleigh-Ritz variational method of estimating eigenvalues, and is particularly widely
used in quantum mechanics (see below).

Conversely, we can use of knowledge of the properties of the eigenfunctions and eigenvalues of
regular Hermitian SL problems to discuss the extrema of λ[y]. The (real, of course) eigenvalues
λn are non-degenerate and increase without bound; the corresponding eigenfunctions yn are
orthogonal. Hence if we look for extrema in the space of functions u which are orthogonal to
y1, they exist at λ2, λ3, . . .. Hence in this space λ2 is an absolute minimum and λ[y] ≥ λ2. In
general, in the space of functions orthogonal to the first N eigenfunctions, λ[y] ≥ λN+1. Note
that one property of the eigenfunctions that we have not assumed is completeness. We will in
fact use this to prove completeness later.

4In deriving Eq. (4.29) we assumed fixed boundary conditions so that
[
η ∂F∂y′

]b
a

= 0 because η(a) = η(b) = 0.

This term also vanishes for periodic boundary conditions and for y′(a) = y′(b) = 0. It does not vanish for
general homogeneous boundary conditions αy = βy′ though, and in that case the functional I[y] has to be
slightly modified though the final conclusions still hold.



4.4.1 Estimation of lowest eigenvalue and adjustment of parameters

As a very simple example, consider the SL equation −y′′(x) = λy(x) with bc y(0) = 0 = y(a)
(the physical problem could be an infinite square well with V = 0 for x ∈ (0, a) and V = ∞
otherwise, or waves on a string). As a trial function, we use u(x) = x(a− x), 0 < x < a, which
obeys the boundary conditions. Then we calculate

λ1 ≤
∫ a
0
yLy dx∫ a

0
y2 dx

=
10

a2
= 1.013

π2

a2
(4.32)

This is spectacularly good! Obviously it helped that our trial function looked a lot like what
we’d expect of the true solution—symmetric about the midpoint, no nodes....

Note that we wrote the numerator as
∫ a
0
uLu dx, However since it is an SL problem (with

appropriate bcs), we have shown that the integral could equally have been written
∫ a
0
p(u′)2 dx

(with p(x) = 1 here) and the avoidance of the second differentiation is often a saving in effort.
Note also that we had ρ = 1 in this case, but that is not general either.

Though we’ve said it already, we reiterate that it is of course imperative that trial functions
obey the boundary conditions of the problem. Without that constraint, it is easy to evade the
bounds: had we chosen u(x) = C above we would have obtained, erroneously, λ1 ≤ 0!

In general, we will do better if we have an adjustable parameter, because then we can
find the value which minimises our upper bound. So in the example above we could try
u(x) = x(a − x) + bx2(a − x)2 (with our previous guess corresponding to b = 0). Letting
Mathematica do the dirty work, we get an energy bound which is a function of b, which takes
its minimum value of 1.00001E0 at b = 1.133/a2. Not much room for further improvement
here!

Above we have plotted, on the left, the true and approximate solutions (except that the true
one is hidden under the second approximation, given in blue) and on the right, the deviations
of the approximate wave functions from the true one (except that for the second approximation
the deviation has been multiplied by 5 to render it visible!) This illustrates a general principle
though: the best trial solution does have deviations from the true one on the part-per-mil scale,
while the eigenvalue is good to 1 part in 105. This is explained further below.



4.4.2 Alternative derivation of Rayleigh-Ritz principle

If we assume that eigenfunctions yi of an SL operator form a complete set, we can derive
the variational principle more simply; this is the method typically used in quantum mechanics
texts.

Completeness implies that any trial solution can be written

u(x) ≡
∞∑
n=1

cnyn(x) (4.33)

and so

Lu(x) =
∞∑
n=1

cnλnρ(x)yn(x). (4.34)

We also define dm = cm/
√∑

n c
2
n, the coefficients of u normalised to 1. Then

λ[u] =

∫ b
a
uLudx∫ b

a
ρu2dx

=

∑
n,m cmcnλn

∫ b
a
ρ(x)ym(x)yn(x)dx∑

n,m cmcn
∫ b
a
ρ(x)ym(x)yn(x)dx

=

∑
n c

2
nλn∑

n c
2
n

=
∑
n

d2nλn

≥ λ1
∑
n

d2n = λ1 (4.35)

where we have used the fact that by definition λn > λ1 for n ≥ 2. In other words the trial
wave function has admixtures of higher eigenfunctions, which raise the value of λ[y] above its
minimum.

This allows us to understand why variational approaches tend to lead to a better result for
λ1 than for y1(x). This is because the error in the eigenvalue is proportional to the coefficients
squared of the admixture of “wrong” states, whereas the error in the wave function is linear in
them.

Furthermore, looking again at the expression λ[u] =
∑

n d
2
nλn, and recalling that the dn

are the overlaps between the trial function and the actual eigenstates of the system, we see
that if we can arrange for the trial wave function to be orthogonal to the first N states, we
obtain a bound on λN+1. In practice we may only be able to arrange orthogonality to our
best ground-state trial function, in which case the bound will not be rigorous (but see the next
section).

The fact that we can obtain these bounds by assuming completeness suggests a close link
between the variational approach and completeness. This we will formalise in the last section.

4.4.3 Use in Quantum Mechanics

Since the method is used so often in QM to find the ground state energy, we restate it as follows:
the variational principle states that if we simply guess the wave function, the expectation value
of the Hamiltonian in that wave function will be greater than the true ground-state energy E0:

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0. (4.36)

We note that

〈Ψ|Ĥ|Ψ〉 =
1

2m
〈p̂Ψ|p̂Ψ〉+ 〈Ψ|V̂ |Ψ〉, (4.37)



and also if we choose an already-normalised trial function Ψ we can ignore the denominator,
〈Ψ|Ψ〉 = 1. Note too that we are not restricted to one-dimensional problems.

In principle we can also exploit the existence of bounds on higher eigenvalues, but usually
this is not possible, because we don’t know the states to which we need the trial function to be
orthogonal. However an exception occurs where the states of the system can be separated into
sets with different symmetry properties or other quantum numbers. Examples include parity
and (in 3 dimensions) angular momentum. For example the lowest state with odd parity will
automatically have zero overlap with the (even-parity) ground state, and so an upper bound
can be found for it as well.

Further examples may be found in the MFQM notes.

4.5 Completeness of the eigenfunctions of a Sturm-Liouville

problem

Not examinable!

We can use the variational principle to show that the eigenfunctions {φn(x)} of a Hermitian
Sturm-Liouville problem are complete, in the following sense. For any continuous, piecewise-
differentiable function f(x) satisfying the same boundary conditions as the φn(x) (assumed

to be real and normalised) we define cn =
∫ b
a
f(x)φn(x)ρ(x)dx. If we consider the difference

between f(x) and the N -term finite sum

gN(x) = f(x)−
N∑
n=1

cnφn(x), (4.38)

we note that gN(x) is orthogonal to all φn(x) for n ≤ N .
We define the mean-square deviation

δN =

∫
|gN(x)|2ρ(x)dx (4.39)

and we demonstrate completeness by showing that lim
N→∞

δN = 0.

The crucial assumption is that the eigenvalues λn are all positive and increase without
bound. The method is to consider λ[gN ], which we know is not less than the eigenvalue λN+1

since gN is orthogonal to all eigenfunctions with lower eigenvalues. Explicit evaluation and
rearrangement gives

δN ≤
λ[f ]

∫ b
a
f 2(x)ρ(x)dx

λN+1

. (4.40)

The numerator is fixed and depends only on f , not N . Since the eigenvalues increase without
bound we see that the large-N limit of the deviation is zero, and we write

f(x) =
∞∑
n=1

cnφn(x). (4.41)

Some further details of the algebra are given here, adapted from Fetter & Walecka, Theoretical
Mechanics of Particles and Continua.

https://theory.physics.manchester.ac.uk/~judith/Quantum/PHYS30201.pdf#nameddest=sect:variation-ground
https://theory.physics.manchester.ac.uk/~judith/PHYS30672/PHYS30672-completeness.pdf


A. Background

A.1 Linear and Hermitian Operators

It is assumed that the reader has a familiarity with the ideas of vector spaces, both finite and
infinite dimensional. For the current course, we will almost exclusively be concerned with the
fact that sets of functions obeying homogeneous boundary conditions on an interval form vector
spaces, and we will not make a distinction between the vector |f〉 and its representation f(x).
In the context of MFQM many results pertaining to Hermitian operators in finite spaces were
carried over without proof into infinite dimensional spaces; by the end of the current course the
basis for these should be clearer.

Operators act on vectors to generate new vectors, which may or may not be in the original
space. (For instance 2×3 matrices act on vectors in C3 to generate vectors in C2, and derivatives
of functions such as sin(πx) which vanish at the boundaries of [0, 1] will not generally satisfy
the same boundary conditions.) Linear operators are those which act term-by-term on a sum
of vectors, so that Q̂(a|f〉 + b|g〉) = aQ̂|f〉 + bQ̂|g〉. In terms of functions, multiplication by
another function, and differentiation, are both linear operators. Less obviously, if K(x, y) is a

function of two variables, the operation
∫ b
a
K(x, y)f(y)dy is also a linear operator on f . (The

limits a and b can be constants or functions of x, but not of y).
The definition of a Hermitian operator in a vector space is one that, for any pair of vectors

|f〉 and |g〉 in the space, 〈g|Ĥ|f〉 = 〈f |Ĥ|g〉∗. It is clear that a 2×3 matrix cannot be Hermitian,
because the existence of the LHS requires |f〉 ∈ C3 and |g〉 ∈ C2, but then the RHS does not
exist. More generally, if we are to consider Ĥ to be Hermitian (or self-adjoint) when acting in
some space, we require that Ĥ|f〉 is another vector in the same space as |f〉. This turns out
to be quite a strong condition. It means that, for instance, the momentum operator is not in
fact Hermitian in the space of energy eigenstates of the infinite square well (as indeed we might
have guessed from the fact that it has no eigenstates in that space) whereas it IS Hermitian
in the closely related space of energy eigenstates for a particle moving freely on a circle which
satisfy periodic boundary conditions.

In a finite dimensional space it is easy to show that for a Hermitian operator the eigenvalues
are real and the eigenvectors are orthogonal. (To be precise, it is easy to show the latter if the
eigenvectors are non-degenerate, but the proof can be extended to show that even for degenerate
eigenvectors, a choice of orthogonal vectors may be made.) It is also easy to show that the
number of eigenvectors is the same as the dimension of the space, and so the set of eigenvectors
is complete, i.e. it forms a basis in the space. The first two points can be demonstrated equally
easily for infinite-dimensional spaces, but completeness is a different matter. At this stage I
will only point out that it could not be true if the domain were not restricted to vectors for
which Ĥ|f〉 is in the same space as |f〉, since Ĥ acting on any sum of its own eigenvectors by
definition returns a new sum of the eigenvectors, which IS in the same space. So any |g〉 for
which Ĥ|g〉 was not in the space could not be so represented.
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A.2 Integration and differentiation

If F (x) is the integral of f(x), then f(x) is the derivative of F (x). So much is learned at A-level,
but experience shows that students are a little hesitant in actual applications. So let’s be more
specific. In particular we want to justify

d

dx

(∫ x

0

f(u)du

)
= f(x). (A.1)

If we define Fa(x) =
∫ x
a
f(u) du, where a is an arbitrary real number (and u in an integration

variable, we could use x′—but to use x would be misleading), then Fa(b) is the net area between
the curve f(x) and the x-axis, with limits x = a and x = b. The integral is additive: if a < b < c,
Fa(c) = Fa(b)+Fb(c). We assume f(x) is smooth over some interval (no discontinuities or poles).
Then for a and x in that interval,

dFa(x)

dx
= lim

ε→0

Fa(x+ ε)− Fa(x)

ε
= lim

ε→0

Fa(x) + Fx(x+ ε)− Fa(x)

ε

= lim
ε→0

1

ε

∫ x+ε

x

f(u) du = lim
ε→0

1

ε
εf(x) = f(x). (A.2)

In the last step, we have used that the fact that the area corresponding to the integral over a
sufficiently short interval is well approximated by the product of the interval and the value of
the function at any point in the interval.

This is very pedantic. A similar construction is used in the theory of complex variables
where its consequences are more far-reaching (the path-independence of the integral of an
analytic function). But it demonstrates what is necessary here, namely that the lower limit of
the integral doesn’t matter. We called our integrated function Fa(x), but a is irrelevant. If we
don’t specify it, F (x) is only defined up to an additive constant, but that constant vanishes
when we differentiate to get the unique original function f(x).

Note if x is the lower limit of the integration, the derivative is −f(x).
We may also encounter cases where one or both limits is a function of x, for instance:

H(x) =
∫ g(x)
0

f(u) du. What is the derivative w.r.t. x? This probably wasn’t in A-level. . .
Starting as before, we reach

dH(x)

dx
= lim

ε→0

1

ε

∫ g(x+ε)

g(x)

f(u) du

= lim
ε→0

1

ε

∫ g(x)+g′(x)ε

g(x)

f(u) du = lim
ε→0

1

ε
g′(x)εf

(
g(x)

)
= g′(x)f

(
g(x)

)
.

But actually it’s just a consequence of the chain rule. From the definition, H(x) = F0

(
g(x)

)
,

and so
dH

dx
=

dF

dg

dg

dx
= g′(x)f

(
g(x)

)
. (A.3)

And for completeness:

d

dx

∫ q(x)

p(x)

f(u) du = q′(x)f
(
q(x)

)
−p′(x)f

(
p(x)

)
. (A.4)



A.3 First-order differential equations

Arfken 7.2

Riley 14.2

Most of the differential equations we will be concerned with for their own sake in this course
are second-order differential equations. They arise naturally in dynamics and non-relativistic
QM. But we will also encounter first-order differential equations, and this is a quick reminder
of the main tools we use to solve them.

i) Constant coefficients
For linear equations of the kind

ay′(x) + by(x) = f(x) (A.5)

where a and b are constants and f(x) is simple, we can use the same method as for second-
order equations of the same kind, writing y as a sum of the “complementary function” (a
solution of the homogeneous equation, f = 0) and a “particular integral” (any, guessed,
solution of the overall equation): y = yCF + yPI. Then

yCF = Aemx where m = −b/a. (A.6)

For f(x) a polynomial, the appropriate trial particular integral is also a polynomial of the
same order; for an exponential, the same exponential (with a coefficient to be fixed)—unless
the exponent is −b/a, in which case multiply by x. For a sum of terms in f , a sum of
particular integrals can be used. Note that the particular integral will have no undetermined
coefficients unless a term proportional to yCF has been included in error. The full solution
will have A undetermined, till a single boundary condition is imposed on the full solution.

ii) Integrating factor
For linear equations of the kind

p(x)y′(x) + q(x)y(x) = f(x) (A.7)

we want to find an integrating factor w(x) such that
(
w(x)p(x)

)′
= w(x)q(x), so that the

equation can be written

(
w(x)p(x)y(x)

)′
= w(x)f(x) ⇒ y(x) =

∫ x
w(x′)f(x′)dx′

w(x)p(x)
. (A.8)

It can easily be checked that

w(x) =
1

p(x)
exp

(∫ x q(x′)

p(x′)
dx′
)

(A.9)

does what is required.1 We can ignore the constant of integration in w as it will cancel in the
final solution. The indefinite integration in Eq. (A.8) introduces a constant of integration

1The derivation is simpler if we divide throughout by p; then we set p = 1. The expression can be derived,
rather than simply verified, by applying the “variables separable” method to the differential equation for w. We
will meet integrating factors again when we learn how to cast general linear second-order differential equations
in so-called “Sturm-Liouville form”, 1.2.3; the expression is identical except that the two functions are then the
coefficient of y′′ and y′.



which is the one undetermined constant in the final solution (to be fixed via the boundary
conditions). Of course for this method to work, we need to be able to perform the two
integrations. But in a wide variety of cases, we can.

Note that since Eq. (A.5) is a special case of Eq. (A.7) with w = e−bx/a, this provides us with
an alternative method of solution which does not involve guessing the particular integral.

iii) Variables separable
Unlike the other two methods, this method can work for non-linear equations. If the method
is applicable, it must be possible to rearrange the equation to read

dy

dx
= f(x)g(y) ⇒

∫
dy

g(y)
=

∫
f(x)dx. (A.10)

Then provided the integrals can be done, the equation is solved.

A.4 Recap of common differential equations in Physics

By this stage of your course you have met a large number of differential equations and their
solutions. The ones we refer to in this course are listed below. In this context we particularly
stress the role and differences between parameters and eigenvalues, as discussed below.

Many of the equations below arise from PDEs after separation of variables. In particular
what we are calling “the wave equation” (or Schrödinger equation) is actually the equation for
the spatial part. The full solution takes the form f(r) e−iωt, where f(r) satisfies

∇2f(r) + k2f(r) = 0, (A.11)

and k2 is related to ω by the dispersion relation. Working in spherical- (or plane-) polar
coordinates, we use separable trial functions and use the method of separation of variables to
obtain three (two) ordinary differential equations, one in each variable. This process introduces
constant(s) of separation: typically each of these is fixed by the boundary conditions as an
eigenvalue in one equation, and then functions as a parameter in the other equation(s). That
parameter then determines the subclass (or order) of solutions possible. For example in 2D,

f(r) = R(r) eimφ; (A.12)

in the φ-equation the eigenvalue m is constrained to be an integer by the “boundary condition”
of single-valuedness, then R(r) = Jm(kr) satisfies Bessel’s equation of order m. In 3D we obtain

f(r) = R(r)Pm
l (cos θ) eimφ ∝ R(r)Y m

l (θ, φ) (A.13)

where Pm
l (z) satisfies the associated Legendre equation, in which m is a parameter but l(l+ 1)

an eigenvalue determined by the requirement of finite solutions. Then R(r) = jl(kr) satisfies
an equation related to Bessel’s equation of order (l+ 1

2
). (In QM of course m and l are related

to the angular momentum; in classical applications they are related to the multipole moments
of the solution.)

Equations (Bessel’s, associated Legendre’s, associated Laguerre’s) with different values of
the parameter (i.e. different orders) are really different equations. For a given parameter value
there is a set of eigenfunctions that have the properties we meet in section 1.2.2 including
generalised orthogonality. But that doesn’t tells us anything about eigenfunctions of different



orders. For instance any two spherical harmonics are orthogonal, but that might be due to the
φ integration; in general the θ-dependent parts (associated Legendre polynomials) for different
m are not orthogonal:∫

Y m
l (θ, φ)∗Y m′

l′ (θ, φ)dΩ = δll′δmm′ but

∫ π

0

Pm
l (cos θ)Pm′

l′ (cos θ) sin θ dθ 6∝ δll′ (A.14)

unless m = m′.
Some of these equations, particularly those based on the Laplacian, are scale invariant so

they have the same form under x→ x0z. Others, such Bessel’s equation, are not scale invariant
but have only a single scale k, so that if written in terms of z = kx there are no dimensioned
constants in the equation. (Both scaled and unscaled versions will be given below.) In these
the scale k is usually treated as an eigenvalue that allows us to satisfy separated boundary
condition, giving rise to discrete vibrational modes or energy levels.

For k2 = 0 we just have the Laplace equation; the angular equations are exactly as above
but the radial equations are simpler and have solutions which are just powers of r.

The wave equations all have versions with an eigenvalue of the opposite sign, k2 → −κ2,
as for instance arises in the diffusion equation. In 1D the solutions are decaying and growing
exponentials. In 2D they are termed modified (spherical) Bessel functions In(κr) and Kn(κr)
and also decay or grow exponentially at large values of r; there are spherical analogues with
similar properties for the 3D problem.

Below, where the second solution is rarely encountered and has no standard name, it is
simply represented by dots.



Laplace’s equation in 1D; scale invariant;

y′′(x) = 0 ⇒ y(x) = A+Bx. (A.15)

Classical oscillator or wave equation in 1D; eigenvalue k2 where k is the wave number or
frequency

y′′(z) + y(z) = 0 ⇒ y(z) = A sin(z) +B cos(z) or

f ′′(x) + k2f(x) = 0 ⇒ f(x) = A sin(kx) +B cos(kx). (A.16)

Radial part of Laplace’s equation in 2D; parameter n (or often m) a constant of separation;
scale invariant:

r2R′′(r) + rR′(r)− n2R(r) = 0 ⇒ R(r) = Arn +Br−n. (A.17)

(or A+B log r for n = 0)
Bessel’s equation, radial part of wave equation in 2D; parameter n (or often m) a constant
of separation, eigenvalue k2 where k is the wave number; solutions regular and irregular Bessel
functions:

z2y′′(z) + zy′(z) + (z2 − n2)y(z) = 0 ⇒ y(z) = AJn(z) +BNn(z) or

r2R′′(r) + rR′(r) + (k2r2 − n2)R(r) = 0 ⇒ R(r) = AJn(kr) +BNn(kr). (A.18)

Radial part of Laplace’s equation in 3D; l a constant of separation; scale invariant:

r2R′′(r) + 2rR′(r)− l(l + 1)R(r) = 0 ⇒ R(r) = Arl +Br−(l+1). (A.19)

Radial part of wave equation in 3D; l a constant of separation; eigenvalue k2; solutions
regular and irregular spherical Bessel functions:

z2y′′(z) + 2zy′(z) + (z2 − l(l + 1))y(z) = 0 ⇒ y(z) = Ajl(z) +Bnl(z) or

r2R′′(r) + 2rR′(r) + (k2r2 − l(l + 1))R(r) = 0 ⇒ R(r) = Ajl(kr) +Bnl(kr). (A.20)

Legendre equation, arises in spherical problems with axially symmetric solutions; eigenvalue
l(l + 1), solutions Legendre polynomials and irregular solutions.

(1− z2)y′′ − 2zy′ + l(l + 1)y = 0 ⇒ y(z) = APl(z) +BQl(z). (A.21)

Associated Legendre equation; parameter m; eigenvalue l(l + 1):

(1− z2)y′′ − 2zy′ +

(
l(l + 1)− m2

1− z2

)
y = 0 ⇒ y(z) = APm

l (z) + . . . (A.22)

Hermite’s equation; eigenvalue n related to energy in quantum oscillator (quadratic po-
tential); solutions Hermite polynomials; here the second solution is rarely encountered but is
technically a confluent hypergeometric function of the first kind.

y′′(z)− 2zy′(z) + 2ny(z) = 0 ⇒ y(z) = AHn(z) + . . . (A.23)

Laguerre equation; eigenvalue N : solutions Laguerre polynomials and irregular solutions

zy′′(z) + (1− z)y′(z) +Ny(z) = 0 ⇒ y(z) = ALN(z) + . . . (A.24)

Associated Laguerre equation, obtained after scaling and extracting the exponential decay
from the radial wave equation for a Coulomb potential, parameter ν = 2l+1 related to angular
momentum, eigenvalue N = n− l − 1 related to energy.

zy′′(z) + (ν + 1− z)y′(z) +Ny(z) = 0 ⇒ y(z) = ALνN(z) + . . . (A.25)



A.5 Systems of algebraic equations

Arfken 2.1

Riley 8.9, 8.18

A.5.1 Determinants and zero-modes

The vanishing of the determinant of an N×N matrix means that its rows do not form a linearly
independent set of N vectors in CN . Note that the size of the space that is spanned by the
rows of A is called its rank. If there are n separate conditions of the form

∑N
n=1 cnani = 0,

the rank of A is N − n. For instance if three rows are identical, or if two sets of two rows are
identical, n = 2.

Since the determinant of a matrix is the product of its eigenvalues, such a matrix must have
at least one zero eigenvalue.

An eigenvector x for which Ax = 0 is sometimes called a zero mode. Generally, if the rank
is N−n, then there will be n zero modes. A matrix of determinant zero is projective: whatever
vector it acts on, the resulting vector will be in the (N − n)-dimensional subspace of non-zero
modes. This is easily seen (at least in the common case of the eigenvectors forming a basis)
by writing the vector x as a sum of the eigenvectors; then Ax will not contain any of the zero
modes.

A.5.2 Uniqueness of solutions

A system of N linear equations in N unknowns x1, x2 . . ., xN , is of the form

a11x1 + a12x2 + . . .+ a1NxN = y1

a21x1 + a22x2 + . . .+ a2NxN = y2
...

aN1x1 + aN2x2 + . . .+ aNNxN = yN ,

which can also be written in the form of a matrix equation Ax = y, may have a unique solution,
no solution or infinitely-many solutions, depending on the properties of A.

If det A 6= 0 then the inverse A−1 exists and the unique solution is x = A−1y. The non-
vanishing of the determinant means that the rows of A are linearly independent. Hence each
of the yi can be specified independently and a solution will exist.

However if det A = 0, the system of equations, in spite of appearances, does not in fact
give N conditions on N unknowns. (That would be most obvious if two of the equations have
the same LHS, so that two of the rows of A were identical, but it is more general.) If the
left-hand sides are not independent, however, there are two possibilities. One is that the yi
are compatible—for instance if the first two rows were identical, we would also have y1 = y2.
Or more generally if

∑N
n=1 cnani = 0, then

∑N
n=1 cnyn = 0 also. Then the system is under-

determined; we have at most N − 1 independent conditions for N unknowns. The solution is
not unique: given one solution, we can add to it multiples of the zero modes and it will still
satisfy the original equation.

The other possibility if det A = 0 is that the yi are not compatible but contradictory. In
this case there are no solutions.



If the yi are compatible, the expansion of y in terms of the eigenvectors of A cannot contain
any of the zero modes, since Ax cannot contain the zero modes for any x. (If the eigenvectors
of A are orthogonal this means y is orthogonal to the zero modes, and this is easy to test for.)

Consider the matrix

A =

 2 −
√

2
√

2

−2
√

2 4 0

2
√

2 0 4

 (A.26)

whose eigenvalues are 0, 4 and 6. It is easy to check that row 3 minus row 2 equals 2
√

2
times row 1, and hence the three rows—and three simultaneous equations with left hand sides
Ax—are not independent. Thus with a source term y, unless y3 − y2 − 2

√
2y1 = 0, there

will be no solution. y = (1, 1, 1)> has no solution for instance. However y = (0, 1, 1)> and
y = (

√
2,−1, 3)> do have solutions. These are not unique though, and if you try to solve the

equations by hand—or with Mathematica—you will just find two of the xi in terms of the third,
eg for y = (0, 1, 1)>, the solution can be written x2 = 1 + x1/

√
2, x3 = 1− x1/

√
2, or x1

x2
x3

 =

 0
1
1

+ c

 √2
1
−1

 (A.27)

where c is an arbitrary constant. Note this form itself is not unique, since if we replace the
arbitrary c by the equally arbitrary d+ 1 the first term would change to (

√
2, 2, 0)>.

It is easily checked that (
√

2, 1,−1)> is the eigenvector of A with zero eigenvalue, i.e. the
zero mode. It can also be shown that the other eigenvectors are (0, 1, 1)> and (1,−

√
2,
√

2)>,
and so our chosen y (which is actually one of the eigenvectors) has no admixture of the zero
mode in its eigenvector expansion. Nor has the other source for which we said solutions existed:√2

−1
3

 =
√

2

 1

−
√

2√
2

+

 0
1
1

 . (A.28)

But  1
1
1

 =
1

3

 1

−
√

2√
2

+

 0
1
1

+

√
2

3

 √2
1
−1

 (A.29)

which does involve the zero mode, and so for y = (1, 1, 1)> there are no solutions.
Note that we have chosen a non-symmetric A here. Its eigenvectors are not orthogonal,

but they are linearly independent (as they must be since the eigenvalues are distinct). So any
source y can be written as a sum of the eigenvectors, but we can’t check for the presence or
absence of the zero mode by taking the scalar product; it is non-zero in both the last two cases
above.

For a system of three equations the discussion of zero modes is illuminating but not necessary
for deciding whether there is a solution; brute force suffices. For anyone wondering what the
systematic method is for cases like this where A is non-symmetric (but still with a complete
set of eigenvectors), though, the answer is that A> has the same eigenvalues as A, and any
two eigenvectors of A> and A corresponding to different eigenvalues are orthogonal.2 So for
solutions to exist, y has to be orthogonal to the zero-mode of A>, which is (2

√
2, 1,−1)>. That

is, 2
√

2y1 + y2 − y3 = 0, exactly the condition we found at the start of this example.

2The eigenvectors of A> are also known as the left-eigenvectors of A since they satisfy y>A = λy>.



A.6 Lagrange multipliers

Arfken 22.3

Riley 5.9

Consider a hill with height h(x, y) (atypically, here, we use y as an independent variable).
To find the highest point, we want to simultaneously satisfy

∂h

∂x
= 0 and

∂h

∂y
= 0 (A.30)

(checking that it really is a maximum that we’ve found). But consider a different problem: on a
particular path across the hill (which does not necessarily reach the summit) what is the highest
point reached? The path may be specified as y = g(x) or more symmetrically as u(x, y) = 0.
This is constrained maximisation: we are constrained to stay on the path.

The trick is to extremize h(x, y) + λu(x, y) with respect to x and y; these two equations
together with the constraint u(x, y) = 0 are enough to fix the three unknowns xm, ym and
λ (though the value of the last is uninteresting and not usually found explicitly; this is also
called the method of “undetermined multipliers”.) So for example with a hemispherical hill
h = h0(1− x2 − y2) and a straight-line path u(x, y) = y −mx− c = 0 we have3

∂(h+ λu)

∂x
= 0 ⇒ −2h0x− λm = 0 ⇒ x = −λm/2h0

∂(h+ λu)

∂y
= 0 ⇒ −2h0y + λ = 0 ⇒ y = λ/2h0 = −x/m. (A.31)

Combining the constraint y − mx − c = 0 with y = −x/m gives x = −c/(m−1 + m), so the
maximum is reached at

(xm, ym) =
c

1 +m2
(−m, 1), hm = h0

1 +m2 − c2

1 +m2
. (A.32)

As promised we didn’t find λ, though we could. In this case we could simply have substituted
y = mx + c into h(x, y) and minimised with respect to x alone, which would have been easier
(check!), but for a more complicated hill and/or path Lagrange’s method is simpler.

3Some presentations of this subject add the equation ∂(h+λu)
∂λ = 0 to the list, but from that we just recover

the imposed constraint u = 0.



A.7 Contour Integration for real integrals

Arfken 11.7,11.8

Riley 24.13

I1

I2

−R R

I2

I1

I3

A)
B)

−R R−ε ε

I shall assume that the following result is known: if f(z) is a meromorphic function of the
complex variable z, (that is it is analytic everywhere except at a finite number of points zi
which are poles of f), then ∮

C

f(z)dz = 2πi
∑
i

b
(i)
1 (A.33)

where b
(i)
1 is the residue at the ith pole, and the sum is over all the poles which lie within the

contour C (which is traversed in an anticlockwise fashion; a clockwise contour would change
the overall sign). This is called the residue theorem. The residue at zi is defined as

b1 = lim
z→zi

1

(n− 1)!

dn−1

dzn−1
(
(z − zi)nf(z)

)
(A.34)

where n is equal to or greater than the order of the pole. However it is rarely necessary to use
the formula; in particular if by inspection f(z) = 1

z−a × g(z), and g(z) is finite and analytic at

z = a (though it may contain factors such as 1
z−b), then a is a simple pole of f with residue

g(a).
Now suppose we have a real integral of the form I =

∫∞
−∞ f(x)dx to perform. If we consider a

closed contour consisting of the real axis and a semicircle at infinity in the upper half plane (see
(A) in the figure above), then the we can use the residue theorem to calculate

∮
C
f(z)dz. We

can furthermore argue that this is the integral we want, I, plus the integral over the semicircle.
IF we can show that the latter vanishes, then 2πi× (the sum of residues in the upper half plane)
will equal I.

There are two common cases where this is valid: one is if limR→∞Rf(Reiθ) = 0. This is
satisfied for example by f(z) = 1

z2+1
, and in this case the only pole in the UHP is at z = i,

with residue 1/2i, hence I = π. (We can equally well close the contour in the LHP; in this case
the pole is at z = −i with residue −1/2i, but the clockwise contour contributes another minus
sign so that the result is unchanged.)

The other is where the integrand can be written f(x) = eikxg(x), and the less stringent
condition limR→∞ g(Reiθ) = 0 holds. Then Jordan’s Lemma says that if k > 0 the integral
over the semicircle at infinity in the UHP will still vanish (crudely, since z = x+ iy and y > 0,
eikz = eikxe−ky and the damped exponential improves the convergence). Conversely, if k < 0,
the integral over the semicircle at infinity in the LHP will vanish. This allows the calculations
of integrals such as

∫∞
−∞

eikx

x−idx which is 2πie−k for k > 0 and 0 for k < 0.



All of this assumes that the integrand does not have poles on the real axis. If it has a simple
pole at x0, the principal value prescription defines∫ b

a

f(x)dx = lim
ε→0

(∫ x0−ε

a

f(x)dx+

∫ b

x0+ε

f(x)dx

)
, (A.35)

Effectively, we allow the diverging areas on either side the pole above and below the axis to
cancel. We use this when we write

∫ b
a

1
x
dx = ln |b| − ln |a| whether or not the interval a → b

spans the origin. Then as well as the integral along (almost) the full real axis and the semicircle
at infinity, we need to add a semicircle radius ε centred on x0 to complete the contour (see (B) in
the figure above, where x0 = 0). Its contribution will not vanish, and so needs to be subtracted
from the closed integral to leave the desired integral I. For a simple pole, the contribution of
a semicircle in the UHP is just −iπ×(residue at the pole). As an example, taking k > 0,∫ ∞

−∞

eikx

x
dx = 0− (−iπe0) = iπ. (A.36)

(Since the only pole is on the axis and hence not in the closed contour, the full integral vanishes.)
If we take the imaginary parts of both sides we get

∫∞
−∞ ksinc(kx)dx = π for k > 0, a useful

result. (If k < 0 we need to close in the lower half plane and the result above would be −iπ, so
the general expression is

∫∞
−∞ ksinc(kx)dx = πsign(k), where sign(k) = k/|k|.)

However it must be stressed that the extraction of the principal value is a choice, appropriate
in cases like this for finding areas and real integrals, but less so in other cases.

A.8 Delta functions

Arfken 1.11

Riley 13.1.3

A δ-function (or more properly “distribution”) is defined by the sifting property:∫ b

a

δ(x− x0)f(x)dx = f(x0) if a < x0 < b, and zero otherwise. (A.37)

It follows that ∫ b

a

δ(x− x0)f(x)dx =

∫ x0+ε

x0−ε
δ(x− x0)f(x)dx if a < x0 < b, (A.38)

i.e. that is there is only support for the integral in the immediate vicinity of x0. Also,∫ x

−∞
δ(y − x0)f(y)dx = f(x0)Θ(x− x0) (A.39)

where the step function Θ(x) is 0 for x < 0 and 1 for x > 0. Though we think of a δ-function
as an infinitely tall, infinitesimally narrow spike, it is usually defined as the limit as some
parameter goes to infinity of a well-behaved function such as a normalised Gaussian, or top-hat
or triangle function, or even κ

π
sinc(κx) or κ

π
sinc2(κx). The sifting property can be demonstrated

by doing the integral with the parameter finite and then letting it go to infinity.



One may meet the δ-function with a more complicated argument, such as δ(ax−b). We can
see that the sifting property will pick out the value of f(b/a), but what about the normalisation?
In fact δ(ax− b) = 1

|a|δ(x− b/a), as shown here:∫ ∞
−∞

δ(ax− b)f(x)dx =

∫ ∞
−∞

δ(y)f

(
y + b

a

)
1

|a|
dy =

1

|a|
f

(
b

a

)
=

∫ ∞
−∞

1

|a|
δ(x− b/a)f(x)dx

(A.40)
The |a| arises as follows. If a > 0, then x = ±∞ ⇒ y = ±∞ and the order of the limits is
unchanged. 1

a
and 1

|a| are the same thing. But if a < 0, then x = ±∞ ⇒ y = ∓∞ and the

order of the limits is swapped. Then we pick up a minus sign as
∫ −∞
∞ → −

∫∞
−∞. And in this

case, − 1
a

= 1
|a| . So writing 1

|a| covers both cases.

What about δ(g(x)) where g(x) is some more complicated function? There will be no
contribution to the integral wherever g(x) is non-zero, but there may be several points xi
at which g(xi) = 0 and all can contribute to the integral. We will assume g(x) has only
simple zeros at real values x1, x2 . . ., xn. Sufficiently close to any one of them, we can write
g(x) ≈ (x − xi)g

′(xi). If we integrate over a region spanning only one zero, the integral is
equivalent to ∫ b

a

δ
(
g(x)

)
f(x)dx =

∫ xi+ε

xi−ε
δ
(
(x− xi)g′(xi)

)
f(x)dx =

1

|g′(xi)|
f(xi).

For an integration interval that spans more than one zero of g(x) we get more than one
contribution, so

δ
(
g(x)

)
=

n∑
i=1

1

|g′(xi)|
δ(x− xi) where xi are the real simple roots of g(x). (A.41)

Worked examples on δ-functions and Fourier transforms, including proof of some results
quoted in this section and the next, can be found here.

A.9 Fourier Transforms

The Fourier transform of f(x) is

F (k) =
1√
2π

∫ ∞
−∞

e−ikxf(x) dx. (A.42)

The inverse of the transformation is

f(x) =
1√
2π

∫ ∞
−∞

eikxF (k) dk. (A.43)

The normalisation, and the sign of i in the exponential are conventions, and should always
be checked when other texts are used. In fact in this course we will often use the alternative
normalisation that drops the 1/

√
2π in the transform and uses 1/2π in the inverse transform,

but here the symmetry is useful. In physics x usually represents space and k, wave number.
Where the initial variable is time t, the conjugate variable is angular frequency ω, and the
kernel eiωt is often used.

https://theory.physics.manchester.ac.uk/~judith/PHYS30672/fourier-examples.pdf


With the normalisation above, Parceval’s theorem says that∫ ∞
−∞

f ∗(x)g(x)dx =

∫ ∞
−∞

F ∗(k)G(k)dk (A.44)

In other words the normalisation is preserved. With the alternative normalisation there would
be a factor of 1/2π on the RHS.

The following results can be useful:

a) If f(x) is symmetric (or antisymmetric), so is F (k):
i.e. if f(x) = ±f(−x) then F (k) = ±F (−k).

b) If f(x) is real, F ∗(k) = F (−k).

c) If f(x) is real and symmetric (antisymmetric), F (k) is real and symmetric (imaginary and
antisymmetric).

d) F.T. [f(κx)] =
1

|κ|
F

(
k

κ

)
.

e) F.T. [f(x+ a)] = eikaF (k).

f) F.T. [eαxf(x)] = F (k + iα) (for real or complex α.)

g) F.T. [F (x)] = f(−k).

h) F.T. [δ(x− x0)] =
1√
2π

e−ikx0

i) F.T. [eik0x] =
√

2πδ(k − k0)

The results from (e) and (f) are called the shift theorems.
Below we show a table Fourier transforms; note that the results above allow us see in ad-

dition that the F.T. of a sinc function is a top-hat function. In the last three lines a is a real
number.

f(x) F (k)

Θ(x)e−αx, Re [α] > 0
1√
2π

1

α + ik
decaying exponential and Lorentzian

1
a
e−x

2/(2a2) e−k
2a2/2 both Gaussians

1
a
Θ(1

2
a+ x)Θ(1

2
a− x)

1√
2π

sinc(1
2
ka) Top hat or slit function and sinc function

1
a2

Θ(a+ x)Θ(a− x)(a− |x|) 1√
2π

sinc2(1
2
ka) Triangle function and sinc-squared

Note that in addition that the F.T. of a sinc function is a top-hat function, and of a sinc-
squared function is a triangle function.

All of these F.T.s can be shown with standard integration techniques, but with the exception
of the Gaussian, contour integration in the complex k plane, invoking Jordan’s lemma, is the
easiest way to do the inverse transforms. Confusingly, in the I.F.T. x plays the role of the
parameter that we called k in the section on Jordan’s Lemma, so we need to close our contour



in the upper or lower half plane according to whether x is positive or negative. Hence the
appearance of Θ(x) and similar terms.

In all of these functions, we can identify a width parameter for the original function (typically
a) and see that the typical width of the transform is proportional to its inverse. In the last
three lines the functions become δ(x) in the limit a→ 0 (or

√
2πδ(x) for the Gaussian) and the

transforms become constants, in accord with result (h) above. Multiplying the sincs by a/(2π)
converts them into functions which become δ(k) as a→∞ as well.
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Above we plot the top hat and triangle functions and their Fourier transforms for three values
of the width parameter. We see that the wider the original function, the narrower the F.T.

The convolution theorem for Fourier transforms is as follows. We define the convolution
h(x) of f(x) and g(x) as

h(x) = f(x) ∗ g(x) ≡
∫ ∞
−∞

f(y) ∗ g(x− y)dy. (A.45)

Then
H(k) =

√
2πF (k)G(k). (A.46)

With the alternative normalisation, the
√

2π is absent. It can be shown that the triangle
function is the convolution of two top-hat functions of half the width. This leads to the bottom
line of the table above.
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