
PHYS20672 Complex Variables and Integral Transforms: How to find residues

Cauchy’s residue theorem states that for a meromorphic function f(z) and a curve C which
encloses a number of poles of f(z), the residue theorem states that∮

C

f(z)dz = 2πi(Sum of residues at all poles inside C)

So calculating countour integrals in such a case reduces to calculating the residues of f(z)
at the relevant poles.

First, we have to find the poles. Usually this is obvious; any zero of the denominator is
a potential pole, though we need to check the whether the numerator also has a zero at that
point before we can be sure. We then use one of the following rules to find the residue at a
pole at z = a.

1. If the function has the form f(z) =
g(z)

z − a
where g(z) is analytic in the immediate vicinity

of z = a, Cauchy’s integral formula tells us that the residue is g(a). (Note the change
of notation: in the usual statement of the formula, f(z) refers to the analytic part, not
the whole integrand—what we are calling g(z) here. Note also that g(z) can be quite
complicated, and can have terms in the denominator so long as they don’t vanish at
z = a).

2. Similarly if the function has the form f(z) =
g(z)

(z − a)n+1
where g(z) is analytic, the residue

is g(n)(a)/n!. This is the nth term in the Taylor series of g(z) about z = a, so if we know
that series, we use rule 4 instead.

3. If f(z) =
g(z)

h(z)
where h(z) and g(z) are analytic in the immediate vicinity of z = a, and

g(a) 6= 0 but h(z) has a simple zero at z = a, then we use b1 =
g(a)

h′(a)
. (The proof follows

from rule 5, using L’Hôpital’s rule.)

4. For f(z) consisting of a number of analytic parts in the numerator and denominator, we
can use Taylor series for each of them separately and then combine, using if necessary a
geometric or binomial series to expand the denominator. If quadratic or higher terms are
needed, note
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If trig functions are involved and the residue is at a point a other than at z = 0, first shift
the argument to w = z − a.

5. The following expressions cannot simply be evaluated by setting z = a, but instead require
the limit z → a to be taken. For that reason their practical use usually reduces to rules
3&4 above.
If we know that f(z) has a simple pole at z = a, we can use b1 = lim

z→a
(z − a)f(z). (This



basically comes from rule 1, defining g(z) = (z − a)f(z) and knowing that it must be
analytic since the pole of f(z) is simple.) Similarly if we know that f(z) has a pole of

order n at z = a, b1 =
1

(n− 1)!
lim
z→a

dn−1

dzn−1

(
(z− a)nf(z)

)
. Note that we will not go wrong

if we overestimate the order of the pole in this formula (ie choose n greater than the
actual order of the pole), but we will give ourselves unnecessary work.

Examples:

• The residue of
sin z

z − 2
at z = 2 is sin 2 (rule 1).

• The residue of
sin z

z2 − 4
at z = 2 is

sin z

z + 2

∣∣∣∣
z=2

=
sin 2

4
(rule 1).

• The residue of
z3

(z − 2)2
at z = 2 is 3z2|z=2 = 12 (rule 2).

• The residue of
sin z

z6
at z = 0 is 1/5! (rule 4).

• The residue of
1

z3 + i
at z = i is

1

3z2

∣∣∣
z=i

= −1

3
(rule 3). This is much faster than

factorizing z3 + i = (z + i)(z − e−5πi/6)(z − e−πi/6) then using rule 1.

• The residue of
1

cosh z − 2 sinh z − 1
at z = 0 is

1

sinh z − 2 cosh z

∣∣∣
z=0

= −1
2

(rule 3; since

the derivative of the denominator does not vanish at z = 0 the pole is simple.)

• The residue of
1

z3 sin2 z
at z = 0 is found from (rule 4)

(sin z)−2 = z−2
(

1− z2

6
+
z4

5!
− . . .

)−2

= z−2
(

1− 2
(
−z

2

6
+
z4

5!

)
+ 3
(
−z

2

6

)2

− . . .
)

= z−2
(

1 +
z2

3
+
z4

15
− . . .

)
so that the residue is 1/15.

• The residue of z2e1/z at z = 0 is 1/6 (the coefficient of (1/z)3 in the expansion of e1/z)
(rule 4).


