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43. Let f(x) be a periodic function with period L. Write down expressions for the Fourier
cosine and sine coefficients an and bn. Use the orthogonality on this interval of the
complete set of functions exp(iknx) where kn = 2πn/L, n ∈ Z to show that f(x) can be
written

f(x) =
∞∑

n=−∞

cn exp(iknx) where cn =
1

L

∫ L/2

−L/2
f(x) exp(−iknx)dx

Show also that c0 = a0, and cn = (an − ibn)/2, c−n = (an + ibn)/2 for n > 0. Show this
ensures that if f(x) is real, the Fourier series in terms of complex exponentials is also
real.

44. Prove the following results for Fourier transforms, where F.T. represents the Fourier
transform, and F.T. [f(x)] = F (k):
a) If f(x) is symmetric (or antisymmetric), so is F (k): i.e. if f(x) = ±f(−x) then
F (k) = ±F (−k).
b) If f(x) is real, F ∗(k) = F (−k).
c) If f(x) is real and symmetric (antisymmetric), F (k) is real and symmetric (imaginary
and antisymmetric).

d) F.T. [f(κx)] =
1

|κ|
F (
k

κ
).

e) F.T. [f(x+ a)] = eikaF (k).
f) F.T. [eαxf(x)] = F (k + iα) (for real or complex α.)
g) F.T. [F (x)] = f(−k).
h) F.T. [δ(x− x0)] = e−ikx0/

√
2π

i) F.T. [eik0x] =
√

2πδ(k − k0)
The results from (e) and (f) are called the shift theorems.

45. Find the Fourier transform of the function defined as f(x) = e−κx for x > 0 and f(x) = 0
for x < 0. Use the result of qu. 39 with an appropriate change of variable to show that
the inverse transform does restore the original function.

46. Show the following:
a) The Fourier transform of a “top hat” function of height 1/a and width a, centred on

x0, is
1√
2π

e−ikx0sinc(ka/2).

b) The Fourier transform of a “triangle” function of height 2/a and width a, centred on

x0, is
1√
2π

e−ikx0sinc2(ka/4). (The function may be written as (2/a− 4|x− x0|/a2).)

c) The Fourier transform of
1√
2π

sinc(κ(x−x0)) is e−ikx0 times a top-hat function of width

2κ and height 1/(2κ), centred on k = 0. (Hint: first use a shift theorem to centre the
function at x = 0. Write sin(κx) as a sum of complex exponentials and deal with each
part separately, using contour integration and an appropriate contour for integrands with
a pole on the real axis (see qu. 38). Whether you close in the upper or lower half plane
will depend on the relative sizes of k and κ (see qu. 39).)
In parts (a) and (b), sketch the functions and comment on the widths of the functions
and their transforms.



47. From the convolution theorem, show that the convolution of two gaussians with width
parameters a and b (eg f(x) = e−x

2/(2a2)) is another with width parameter
√
a2 + b2.

48. Show that the triangle function of qu. 46b can be written as a convolution of two identical
top-hat functions of half the width. Hence explain the form of the Fourier transform of
the triangle function.

49. Prove the following results for delta functions. In each case except the last, multiply both
sides by f(x) and integrate over x (using a shift of variable if required).

a) δ(ax− b) =
1

|a|
δ(x− b/a)

b) δ(x2 − 4) = 1
4

(
δ(x− 2) + δ(x+ 2)

)
c) δ

(
g(x)

)
=
∑
i

1

|g′(xi)|
δ(x− xi) where xi are the real (simple) roots of g(x).

d)

∫ x

−∞
δ(x′ − a)dx′ = θ(x− a), where θ(x) = 0 if x < 0 and 1 if x > 0.

50. Let f(z) be a function which tends to zero as |z| → ∞ and which has only a finite number
of simple poles at points zn in the upper half plane, and none on the real axis, furthermore
let f(x) be real on the real axis. Let b

(n)
1 be the residues of f(z) at these poles. Use the

same method that we used in lectures for
∫∞
−∞ sincx dx to show that∫ ∞

−∞
κ sinc(κx)f(x) dx = πf(0) + 2π

∑
n

Im

[
i
b
(n)
1 exp(iκzn)

zn

]
.

Hence show that limκ→∞
∫∞
−∞(κ/π)sinc(κx)f(x)dx = f(0). Thus {(κ/π)sinc(κx)} is a

delta-sequence for functions of this kind. (Can you argue that the restriction to simple
poles is not in fact necessary for this final result?)

51. Ensure that you can reproduce all the Laplace transforms in the table, particularly those
which were not covered in lectures.

52. Find the Laplace transforms of the following functions (using results from tables where
appropriate):

a) t sinωt b) t−1(1− e−αt) c) e−αtt3 sinh(βt)

53. Using the table, find the inverse Laplace transforms of the following (you may assume
any restrictions on parameters required for the inverse to exist are satisfied):

a)
s+ 3

s(s+ 1)
b)

1

(s− 1)2 + 4
c)

s+ 1

s(s2 + 1)
d)

e−3s

(s− 1)2 + 4

54. Given that y(t) satisfies
d2y

dt2
+ y = t with initial conditions y = 1, y′ = −2 at t = 0, show

that the Laplace transform of y, Y (s), is

1

s2(s2 + 1)
+

s− 2

s2 + 1

and hence find y(t).



55. Use Laplace transforms to solve

d2y

dt2
+ 4y =

{
0 if 0 < t < 2,

1 if t > 2.

subject to the initial conditions y = 1, y′ = 2 at t = 0.

56. The functions x(t) and y(t) satisfy the simultaneous differential equations

d2x

dt2
= 2x− 3y

d2y

dt2
= y − 2x

with initial conditions x = 1, y = x′ = y′ = 0 at t = 0. Solve by using Laplace transforms.

57. Use the convolution theorem to find the following inverse Laplace transform:

L−1

(
1

s2(s+ 1)2

)
= (t+ 2)e−t + t− 2 for t > 0.

58. Use the Bromwich integral to do the same inverse transform as above.


