PHYS20672 Complex Variables and Integral Transforms: Examples 5

35. Evaluate the following integrals using contour integration:
a) $\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} \mathrm{~d} x$
b) $\int_{-\infty}^{\infty} \frac{x^{4}}{1+x^{8}} \mathrm{~d} x$
c) $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}-2 x+5\right)^{2}} \mathrm{~d} x$
36. Evaluate the following integrals using contour integration; in each case check that the conditions for Jordan's lemma to hold are satisfied:

$$
\text { a) } \int_{-\infty}^{\infty} \frac{x \sin x}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x \quad \text { b) } \int_{-\infty}^{\infty} \frac{\sin \pi x}{1+x+x^{2}} \mathrm{~d} x
$$

What would we get in each case if we replaced $\sin x$ with $\cos x$?
37. Let a be a real number, and C be the (open) contour round a semicircle of radius ϵ, centred on the point $z=a$, starting and ending on the real axis and taken anticlockwise. Consider the integral round C of $(z-a)^{n}$ where n is an integer which can be positive, zero or negative. Show that the integral vanishes for odd n, except for $n=-1$, and is πi for $n=-1$. Show also that for even n, the limit as $\epsilon \rightarrow 0$ is zero if $n>-1$ and undefined if $n<-1$. Hence show that if $f(z)$ has a simple pole at $z=a$, the integral on C is

$$
\lim _{\epsilon \rightarrow 0} \int_{C} f(z) \mathrm{d} z=\frac{1}{2} \oint f(z) \mathrm{d} z=i \pi b_{1}^{z=a} \quad \text { where } b_{1}^{z=a}=\lim _{z \rightarrow a}(z-a) f(z) .
$$

Evaluate the following, where in each case C is the small semicircle round the pole described above:
a) $\lim _{\epsilon \rightarrow 0} \int_{C} \frac{\mathrm{e}^{z}}{z} \mathrm{~d} z$
b) $\lim _{\epsilon \rightarrow 0} \int_{C} \frac{z^{2}-2 z+1}{z+1} \mathrm{~d} z$
c) $\lim _{\epsilon \rightarrow 0} \int_{C} \frac{1-\mathrm{e}^{z}}{z^{2}} \mathrm{~d} z$
38. The following integrals all have poles on the real axis. Find the Cauchy principal value using contour integration; where appropriate check that the conditions for Jordan's lemma to hold are satisfied.
a) $\int_{-\infty}^{\infty} \frac{1}{(x-2)\left(x^{2}+1\right)} \mathrm{d} x$
b) $\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}-4\right)} \mathrm{d} x$
c) $\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$

Hint: for (c), use $\sin ^{2} x=\frac{1}{2} \operatorname{Re}\left(1-e^{2 i x}\right)$
39. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\mathrm{e}^{i x t}}{\alpha+i x} \mathrm{~d} x
$$

where $\alpha>0$ but t can be positive or negative. (Hint - consider positive and negative t separately.)
40. Choose a suitable contour to evaluate

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{(x+1)^{2}} \mathrm{~d} x
$$

41. Use an appropriate contour integral of the functions suggested to prove the following series:
a)

$$
f(z)=\frac{\cot z}{z^{4}} ; \quad \frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}}+\ldots=\frac{\pi^{4}}{90}
$$

b)

$$
f(z)=\frac{1}{z^{5} \cos z} ; \quad \frac{1}{1^{5}}-\frac{1}{3^{5}}+\frac{1}{5^{5}}-\frac{1}{7^{5}}+\ldots=\frac{5 \pi^{5}}{1536}
$$

42. By considering a change of variable $w=1 / z$, and defining $g(w)=f(1 / w)$, show that

$$
\oint_{C} f(z) \mathrm{d} z=\oint_{C^{\prime}} \frac{g(w)}{w^{2}} \mathrm{~d} w
$$

where C^{\prime} is the curve on the w plane corresponding to the curve C in the z plane, but traversed in the conventional (anticlockwise) direction. For instance if C is the circle $|z|=R, C^{\prime}$ is the circle $|w|=1 / R$. (Pay attention to the sign!)
Hence show that the sum of the residues of $f(z)$ within C must equal the sum of the residues of $g(w) / w^{2}$ within C^{\prime}. Verify this explicitly for $f(z)=1 /\left(z^{2}-3 z+2\right)$ and C being the circle $|z|=R$ for $R=1 / 2,3 / 2$ and $5 / 2$.

