PHYS20672 Complex Variables and Integral Transforms: Examples 3

20. In each of the following cases evaluate $\int_{C} f(z) \mathrm{d} z$ for the curves C_{1} and C_{2}, where the endpoints are $a=1$ and $b=i$, and C_{1} is the path which follows the axes and passes through the origin, while C_{2} is a the straight lines segment $y=1-x$.

$$
\begin{array}{ll}
\text { a) } f(z)=\operatorname{Re}(z) & \text { b) } f(z)=z
\end{array}
$$

21. Evaluate $\int_{C}|z| \mathrm{d} z$ for the curves C_{1} and C_{2}, where the endpoints are $a=1$ and $b=-1$, and C_{1} is along the x-axis and C_{2} is a semicircle of unit radius in the upper half plane.
22. Writing $z=a+\operatorname{Re}^{i \theta}, 0 \leq \theta \leq 2 \pi$, and using the path $|z-a|=R$, show
a) $\int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi i$
b) $\int_{C} \frac{1}{(z-a)^{n}} \mathrm{~d} z=0 \quad$ for integer $n>1$

Hence using Cauchy's theorem and partial fractions, find $\int_{C} f(z) \mathrm{d} z$ in the following cases:
(a) $f(z)=1 /(z-i) ; C:|z|=R$, where i) $R=1 / 2$, ii) $R=2$.
(b) $f(z)=1 /\left(z^{2}-3 z+2\right) ; C:|z|=R$, where i) $R=1 / 2$, ii) $R=3 / 2$, iii) $R=5 / 2$.
(c) $f(z)=(z+1) /\left(z^{2}-3 z+2\right)$ for the same contours as (b).
(d) $f(z)=\left(z^{2}+z+1\right) /\left(z^{3}-z^{2}\right)$ for the same contours as (a).
23. Use the appropriate Cauchy integral formula to evaluate the following, where C_{1} is a circle with $|z|=1$ and C_{2} is a square with corners at $\pm 2, \pm 2+4 i$.
a) $\oint_{C_{1}} \frac{e^{3 z}}{z} \mathrm{~d} z$
b) $\oint_{C_{1}} \frac{\cos ^{2}(2 z)}{z^{2}} \mathrm{~d} z$
c) $\oint_{C_{1}} \frac{\sin ^{2}(2 z)}{z^{2}} \mathrm{~d} z$
d) $\oint_{C_{2}} \frac{z^{2}}{z-2 i} \mathrm{~d} z$
e) $\oint_{C_{2}} \frac{z^{2}}{z^{2}+4} \mathrm{~d} z$
24. Show that

$$
\left|\frac{1}{z^{2}+1}\right| \leq \frac{1}{R^{2}-1} \quad \text { for }|z|=R>1
$$

(See question 4.) Hence use the estimation lemma to show that

$$
\lim _{R \rightarrow \infty} \oint \frac{1}{z^{2}+1} \mathrm{~d} z=0 \quad \text { for the circular path }|z|=R .
$$

Prove the result from Cauchy's integral formula.
25. By writing $z=\mathrm{e}^{i \theta}$ and hence $\mathrm{d} \theta=\mathrm{d} z /(i z)$, and using formulae such as $\cos \theta=\frac{1}{2}\left(z+z^{-1}\right)$, convert the following to contour integrals around the unit circle and evaluate using the appropriate Cauchy integral formulae:
a) $\int_{0}^{2 \pi} \cos ^{4} \theta \mathrm{~d} \theta$
b) $\int_{0}^{2 \pi} \sin ^{6} \theta \mathrm{~d} \theta$
c) $\int_{0}^{2 \pi} \cos ^{2 n} \theta \mathrm{~d} \theta$
d) $\int_{0}^{2 \pi} \frac{\cos \theta}{4 \cos \theta-5} d \theta$
e) $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{3 \cos \theta+5} \mathrm{~d} \theta$

In (c), you should be able to express your answer as $2 \pi(2 n-1)!!/(2 n)!$!, where, eg, $7!!=7.5 .3 .1$ and $8!!=8.6 .4 .2$.
26. In this question we prove the Cauchy integral formula for $f^{(n)}(a)$ by induction. Start by assuming it holds for $f^{(n-1)}(a)$, and use it in the expression

$$
f^{(n)}(a)=\lim _{h \rightarrow 0} \frac{f^{(n-1)}(a+h)-f^{(n-1)}(a)}{h}
$$

to show that it then holds for $f^{(n)}(a)$ as well. (This follows the proof in lectures for $f^{\prime}(a)$.) But since it holds for $n=1$, it must hold for any positive integer n. If the general case is too hard, start with $f^{\prime \prime}(a)$ as a warm-up.
27. Verify that the argument theorem holds for the function $f(z)=(2 z+1) /\left(z^{2}+z-6\right)$ and the contour $|z|=5 / 2$.

