PHYS20672 Complex Variables and Integral Transforms: Examples 2

10. Using the definition of the derivative, differentiate the following (or show that the derivative doesn't exist):

a)
$$z^3 + z^2$$
 b) $1/z$ (for $z \neq 0$) c) $|z|^2$

For each case, identify u(x, y) and v(x, y) and determine where, if anywhere, the Cauchy-Riemann equations are satisfied.

11. Assuming the usual rules for differentiation of real functions (eg $\frac{d(\sin x)}{dx} = \cos x$) show that

a)
$$\frac{\mathrm{d}(\sin z)}{\mathrm{d}z} = \cos z$$
 b) $\frac{\mathrm{d}(\ln z)}{\mathrm{d}z} = \frac{1}{z}$

In each case find the region in which the Cauchy-Riemann equations are satisfied.

- 12. Let f(z) = u + iv and g(z) = s + it be analytic functions of z. Consider the function g(w) where w = u + iv and write the Cauchy-Riemann equations in terms of these variables (*ie* using $\partial s/\partial u$ etc). Hence show that the function g(f(z)) is an analytic function of z, by showing that the Cauchy-Riemann equations for $\partial s/\partial x$ etc are satisfied.
- 13. i) Prove that if u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations, they are also "harmonic", that is they satisfy Laplace's equation.

ii) Prove that the form of the Cauchy-Riemann equations in polar coordinates below follows from the Cartesian form:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

iii) Prove that if u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations, f = u + iv is a function only of z and not of \overline{z} . (Hint: write $x = (z + \overline{z})/2$ and $y = (z - \overline{z})/(2i)$, and show that $\partial f/\partial \overline{z}|_z = 0$ and $\partial f/\partial z|_{\overline{z}} = df/dz$.)

- 14. u(x, y) = 2xy is the real part of an analytic function f(z). Using the Cauchy-Riemann equations, find the conjugate function v(x, y) which is the imaginary part. Hence construct f(z).
- 15. An analytic function f(z) has imaginary part $v(x, y) = ye^x \cos y + xe^x \sin y$. Show that v(x, y) is harmonic, and find the corresponding real part of f(z). Express f(z) in terms of z.
- 16. In general, when we change from one set of (real) coordinates x, y to another set u, v, the new area element du dv is equal to $\mathcal{J} dx dy$ where the Jacobian \mathcal{J} is defined as

$$\mathcal{J} = \left| \begin{array}{cc} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array} \right|,$$

where $|\ldots|$ represents the determinant. Show that if f(z) = u + iv is analytic, $\mathcal{J} = |\mathrm{d}f/\mathrm{d}z|^2$ (where here $|\ldots|$ represents the magnitude!)

The next three questions refer to these three figures, which also show the coordinates to use in each case.

17. Two semi-infinite metal sheets are at right angles to each other; one (in the xz plane) is held at 0 Volts and the other (in the yz plane) is held at 100 Volts. We want to find the potential in the region x > 0, y > 0. Argue that the potential is a function of x and y only. (Henceforth z will refer to x + iy as usual.)

Use the method of conformal mapping, with the transformation $Z = \ln z$, to show that the two plates map into a parallel plate capacitor with plates at Y = 0 and $Y = \pi/2$. Find the potential in terms of $\{X, Y\}$ and hence in terms of $\{x, y\}$, verifying that it obeys the boundary conditions in the original geometry. Sketch some equipotentials and field lines.

18. A hot cylinder of radius R $(T = T_0)$ rests on, but is insulated from, an infinite cold plate $(T = 0^{\circ} \text{ C})$. Use the transformation $Z = R^2/z$ to map the surface of the cylinder and the plate to two infinite parallel plates at Y = -R/2 and Y = 0 respectively (take the point of contact to be z = 0). Hence show that the temperature distribution in the region above the plane and outside the cylinder in the original problem is $T = 2T_0Ry/(x^2 + y^2)$ and sketch some isotherms and lines of heat flow.

19. Consider the conformal mapping
$$Z = \ln\left(\frac{R+z}{R-z}\right)$$
.

For points with |z| < R, show that

$$Y = \arctan\left(\frac{y}{R+x}\right) + \arctan\left(\frac{y}{R-x}\right) = \arctan\left(\frac{2yR}{R^2 - x^2 - y^2}\right)$$

Find the shape of lines of constant Y in the xy plane, for $|Y| < \pi/2$.

By taking the limit as $|z| \to R$, show that the semi-circles with |z| = R above and below the x-axis correspond to $Y = \pi/2$ and $Y = -\pi/2$ respectively.

A capacitor consists of two half-cylinders, radius R, which are insulated from one another where they nearly touch. The upper half is held at 100 V and the lower half at 0 V. Use the results above to show that the potential between the half-cylinders is

$$\phi(x,y) = \left[50 + \frac{100}{\pi} \arctan\left(\frac{2yR}{R^2 - x^2 - y^2}\right)\right] \quad \mathbf{V}.$$

Sketch the equipotentials, and without further calculation add an educated guess at the field lines to your sketch.