PHYS20672 Complex Variables and Integral Transforms: Examples 2

10. Using the definition of the derivative, differentiate the following (or show that the derivative doesn't exist):
a) $z^{3}+z^{2}$
b) $1 / z \quad($ for $z \neq 0)$
c) $|z|^{2}$

For each case, identify $u(x, y)$ and $v(x, y)$ and determine where, if anywhere, the CauchyRiemann equations are satisfied.
11. Assuming the usual rules for differentiation of real functions ($\operatorname{eg} \frac{\mathrm{d}(\sin x)}{\mathrm{d} x}=\cos x$) show that

$$
\text { a) } \frac{\mathrm{d}(\sin z)}{\mathrm{d} z}=\cos z \quad \text { b) } \frac{\mathrm{d}(\ln z)}{\mathrm{d} z}=\frac{1}{z}
$$

In each case find the region in which the Cauchy-Riemann equations are satisfied.
12. Let $f(z)=u+i v$ and $g(z)=s+i t$ be analytic functions of z. Consider the function $g(w)$ where $w=u+i v$ and write the Cauchy-Riemann equations in terms of these variables (ie using $\partial s / \partial u$ etc). Hence show that the function $g(f(z))$ is an analytic function of z, by showing that the Cauchy-Riemann eqations for $\partial s / \partial x$ etc are satisfied.
13. i) Prove that if $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations, they are also "harmonic", that is they satisfy Laplace's equation.
ii) Prove that the form of the Cauchy-Riemann equations in polar coordinates below follows from the Cartesian form:

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

iii) Prove that if $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations, $f=u+i v$ is a function only of z and not of \bar{z}. (Hint: write $x=(z+\bar{z}) / 2$ and $y=(z-\bar{z}) /(2 i)$, and show that $\partial f /\left.\partial \bar{z}\right|_{z}=0$ and $\partial f /\left.\partial z\right|_{\bar{z}}=\mathrm{d} f / \mathrm{d} z$.)
14. $u(x, y)=2 x y$ is the real part of an analytic function $f(z)$. Using the Cauchy-Riemann equations, find the conjugate function $v(x, y)$ which is the imaginary part. Hence construct $f(z)$.
15. An analytic function $f(z)$ has imaginary part $v(x, y)=y \mathrm{e}^{x} \cos y+x \mathrm{e}^{x} \sin y$. Show that $v(x, y)$ is harmonic, and find the corresponding real part of $f(z)$. Express $f(z)$ in terms of z .
16. In general, when we change from one set of (real) coordinates x, y to another set u, v, the new area element $\mathrm{d} u \mathrm{~d} v$ is equal to $\mathcal{J} \mathrm{d} x \mathrm{~d} y$ where the Jacobian \mathcal{J} is defined as

$$
\mathcal{J}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|
$$

where $|\ldots|$ represents the determinant. Show that if $f(z)=u+i v$ is analytic, $\mathcal{J}=$ $|\mathrm{d} f / \mathrm{d} z|^{2}$ (where here $|\ldots|$ represents the magnitude!)

The next three questions refer to these three figures, which also show the coordinates to use in each case.
17. Two semi-infinite metal sheets are at right angles to each other; one (in the $x z$ plane) is held at 0 Volts and the other (in the $y z$ plane) is held at 100 Volts. We want to find the potential in the region $x>0, y>0$. Argue that the potential is a function of x and y only. (Henceforth z will refer to $x+i y$ as usual.)
Use the method of conformal mapping, with the transformation $Z=\ln z$, to show that the two plates map into a parallel plate capacitor with plates at $Y=0$ and $Y=\pi / 2$. Find the potential in terms of $\{X, Y\}$ and hence in terms of $\{x, y\}$, verifying that it obeys the boundary conditions in the original geometry. Sketch some equipotentials and field lines.
18. A hot cylinder of radius $R\left(T=T_{0}\right)$ rests on, but is insulated from, an infinite cold plate ($T=0^{\circ} \mathrm{C}$). Use the transformation $Z=R^{2} / z$ to map the surface of the cylinder and the plate to two infinite parallel plates at $Y=-R / 2$ and $Y=0$ respectively (take the point of contact to be $z=0$). Hence show that the temperature distribution in the region above the plane and outside the cylinder in the original problem is $T=2 T_{0} R y /\left(x^{2}+y^{2}\right)$ and sketch some isotherms and lines of heat flow.
19. Consider the conformal mapping $Z=\ln \left(\frac{R+z}{R-z}\right)$.

For points with $|z|<R$, show that

$$
Y=\arctan \left(\frac{y}{R+x}\right)+\arctan \left(\frac{y}{R-x}\right)=\arctan \left(\frac{2 y R}{R^{2}-x^{2}-y^{2}}\right)
$$

Find the shape of lines of constant Y in the $x y$ plane, for $|Y|<\pi / 2$.
By taking the limit as $|z| \rightarrow R$, show that the semi-circles with $|z|=R$ above and below the x-axis correspond to $Y=\pi / 2$ and $Y=-\pi / 2$ respectively.
A capacitor consists of two half-cylinders, radius R, which are insulated from one another where they nearly touch. The upper half is held at 100 V and the lower half at 0 V . Use the results above to show that the potential between the half-cylinders is

$$
\phi(x, y)=\left[50+\frac{100}{\pi} \arctan \left(\frac{2 y R}{R^{2}-x^{2}-y^{2}}\right)\right] \mathrm{V} .
$$

Sketch the equipotentials, and without further calculation add an educated guess at the field lines to your sketch.

