PHYS20672 Complex Variables and Integral Transforms: Examples 1

1. Write the following expressions in the form x+iy and sketch their locations on the complex plane:

a)
$$\frac{1}{10}(3+4i)^2$$
 b) $\frac{4+5i}{3-4i}$ c) $3e^{5i\pi/3}$ d) $e^{1+i\pi/3}$ e) $1+ie^{7i\pi/6}$

For each case find |z| and the principle value of the argument θ (for $0 \le \theta < 2\pi$).

2. Sketch the curves

a)
$$|z - 1| = 2$$
 b) $\arg(z - i) = \pi/4$
c) $\operatorname{Re}(z^2) = 3$ for $y > 0$ d) $\operatorname{Re}(e^z) = 1$ for $-\pi/2 < y < \pi/2$.

3. Sketch the regions

a)
$$\operatorname{Re}(z) > -3$$
 b) $1 < |z-1-i| \le 2$ c) $|\operatorname{arg}(z-1-i)| \le \pi/4$ d) $|z-1| < |z+1|$.

4. Give a geometric proof (ie using the vector analogy) that for any two complex numbers z_1 and z_2 ,

$$|(|z_1| - |z_2|)| \le |z_1 \pm z_2| \le |z_1| + |z_2|.$$

Hence show that, on the circle |z| = R,

a)
$$R^2 - 1 \le |z^2 \pm 1| \le R^2 + 1$$
 b) $\left| \frac{z^2 + 1}{z^2 - 1} \right| \le \frac{R^2 + 1}{R^2 - 1}$

5. Calculate the following:

a) $\sqrt{1+i}$ b) $\operatorname{Ln}(1+i)$ c) $\cos(\pi/4+i)$ d) $\arcsin i$

6. Verify the following identities:

a)
$$\sinh(iz) = i \sin z$$
 b) $\sin(iz) = i \sinh z$ c) $\arcsin(iz) = i \operatorname{arcsinh} z$
d) $\operatorname{arcsinh} z = \ln(z + \sqrt{1+z^2})$ e) $\operatorname{arctanh} z = \frac{1}{2} \ln(\frac{1+z}{1-z})$

Show that $(\cos z)^2 + (\sin z)^2 = 1$ even for complex z.

7. For each of the following functions, give the domain:

a)
$$f(z) = \frac{1}{z^2 + 1}$$
 b) $f(z) = \frac{z}{z + \overline{z}}$ c) $\frac{1}{|z|^2 - 1}$ d) $\operatorname{Ln}(z)$

For which is the domain an open, connected set of points of the complex plane?

- 8. Consider the function $f(z) = z^3 + 5z^2 + 2$. Calculate (numerically) f(z) for $z = \exp(in\pi/4)$ for n = 0 8. Hence sketch the path traced in the *w*-plane for w = f(z) as *z* follows the unit circle, with $0 \le \theta < 2\pi$. Also, sketch a plot of $\operatorname{Arg}[w]$ as a function of θ . Repeat for the function $z^3 + 5z^2 + 8$. Relate your results for the increase in $\operatorname{Arg}[w]$ to the number of zeros of each function with a modulus less than one.
- 9. Reproduce the plots of lines of constant u and v given in the lecture handout for $w = z^2$ and $w = \operatorname{Ln} z$;