PHYS20672 Complex Variables and Integral Transforms: Examples 1

1. Write the following expressions in the form $x+i y$ and sketch their locations on the complex plane:
a) $\frac{1}{10}(3+4 i)^{2}$
b) $\frac{4+5 i}{3-4 i}$
c) $3 e^{5 i \pi / 3}$
d) $\mathrm{e}^{1+i \pi / 3}$
e) $1+i \mathrm{e}^{7 i \pi / 6}$

For each case find $|z|$ and the principle value of the argument θ (for $0 \leq \theta<2 \pi$).
2. Sketch the curves
a) $|z-1|=2$
b) $\arg (z-i)=\pi / 4$
c) $\operatorname{Re}\left(z^{2}\right)=3$ for $y>0$
d) $\operatorname{Re}\left(e^{z}\right)=1$ for $-\pi / 2<y<\pi / 2$.
3. Sketch the regions
a) $\operatorname{Re}(z)>-3$
b) $1<|z-1-i| \leq 2$
c) $|\arg (z-1-i)| \leq \pi / 4$
d) $|z-1|<|z+1|$.
4. Give a geometric proof (ie using the vector analogy) that for any two complex numbers z_{1} and z_{2},

$$
\left|\left(\left|z_{1}\right|-\left|z_{2}\right|\right)\right| \leq\left|z_{1} \pm z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

Hence show that, on the circle $|z|=R$,
a) $R^{2}-1 \leq\left|z^{2} \pm 1\right| \leq R^{2}+1$
b) $\left|\frac{z^{2}+1}{z^{2}-1}\right| \leq \frac{R^{2}+1}{R^{2}-1}$.
5. Calculate the following:
a) $\sqrt{1+i}$
b) $\operatorname{Ln}(1+i)$
c) $\cos (\pi / 4+i)$
d) $\arcsin i$
6. Verify the following identities:
a) $\sinh (i z)=i \sin z$
b) $\sin (i z)=i \sinh z$
c) $\arcsin (i z)=i \operatorname{arcsinh} z$
d) $\operatorname{arcsinh} z=\ln \left(z+\sqrt{1+z^{2}}\right)$
e) $\operatorname{arctanh} z=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right)$

Show that $(\cos z)^{2}+(\sin z)^{2}=1$ even for complex z .
7. For each of the following functions, give the domain:
a) $f(z)=\frac{1}{z^{2}+1}$
b) $f(z)=\frac{z}{z+\bar{z}}$
c) $\frac{1}{|z|^{2}-1}$
d) $\operatorname{Ln}(z)$

For which is the domain an open, connected set of points of the complex plane?
8. Consider the function $f(z)=z^{3}+5 z^{2}+2$. Calculate (numerically) $f(z)$ for $z=\exp (i n \pi / 4)$ for $n=0-8$. Hence sketch the path traced in the w-plane for $w=f(z)$ as z follows the unit circle, with $0 \leq \theta<2 \pi$. Also, sketch a plot of $\operatorname{Arg}[w]$ as a function of θ. Repeat for the function $z^{3}+5 z^{2}+8$. Relate your results for the increase in $\operatorname{Arg}[w]$ to the number of zeros of each function with a modulus less than one.
9. Reproduce the plots of lines of constant u and v given in the lecture handout for $w=z^{2}$ and $w=\operatorname{Ln} z$;

