LATTICE DESIGN CODES: LECTURE FOUR: LOOKING AT CODES

Hywel Owen, University of Manchester/Cockcroft Institute

dq4>o

The Cockcroft Institute
of Accelerator Science and Technology

[o) (\

Px

=1

1

=

oy

1
OO O OO0 O =
O O OO =™
O O LM~ OO
O = OO0 OO

O OO+ OO
@

—°NNO O O O
o

Remember our matrix element £56 ?

This is a ballistic term, i.e. it advances or retards particles based on their velocity — faster
particles are advanced, whilst slower ones are retarded.

Sometimes this component is present in a code, sometimes it is not. This is an example of a
‘gotcha’.

Exercise: for a 1 GeV particle beam with 1% energy spread, and initial zero bunch length, what
is the bunch lengthening per metre of drift space?

4>

The Cockeroft Institute
of Accelerator Science and Technology

A bestiary of codes: 1

There are a large variety of codes available. Let’s first look at the main places you can find out
about them.

The CARE-HHH Code Repository:
http://care-hhh.web.cern.ch/care-hhh/simulation codes catalogue and repository.htm

Kind of the same as the ASTeC portal, but geared towards linear colliders.

Los Alamos Code Group: http://laacgl.lanl.gov/laacg/software/software.phtml

Previously was the main page people went to for information about codes.

Andrei Semenov’s Physics Code page: http://www.jlab.org/~semenov/rlinks/soft.html

A great web page giving links to LOTs of general scientific software — compilers, languages,
tools, control systems etc.

John Jowett’s pages: http://jowett.home.cern.ch/jowett/computing.html

A good example of an integrated suite of tools.

4>

The Cockeroft Institute
of Accelerator Science and Technology

A bestiary of codes: 2

One way to characterise codes is as below. There are several available codes in each category
of course!

Trackers Space Linacs
— charge

Specific vhchrotrot
Radiation

4>

The Cockeroft Institute
of Accelerator Science and Technology

Let’s look at optics codes in more detail

An optics code does some or more of the following:

Describes the motion of a particle in the 6 dimensional phase space under the influence of
external fields

Linear motion
Definition of system
Definition of geometry
Fitting of linear optics functions etc.

Nonlinear motion
Nonlinear perturbations
Dynamic aperture

Other perturbations
Error analysis
Orbit analysis

4>

The Cockeroft Institute
of Accelerator Science and Technology

Different points of view

The physicist who cares only about the methods/assumptions used.
The programmer who wants to implement the newest programming techniques.

The user (also a physicist/programmer) who doesn’t care about methods and programming but
likes a well documented, usable, cross-checked code to get the work done.

(from Winni Decking’s nice talk on codes)

Beware of codes that are written too much as an exercise in programming rather than physics,
or you may end up with ‘abject-oriented programming’, as Etienne Forest has called it.

4>

The Cockeroft Institute
of Accelerator Science and Technology

General structure of a code

1. Get the data/lattice into the code - the lattice parser
2. Calculate
J Linear optics functions
J Tracking
o Construct Map
3. Analyze the result
. Display optics function
. Calculate DA, frequency map, nonlinear distortions

These are split up in a variety of ways in different codes, and there are 3 basic philosophies that
you will see:

1. Monolithic codes that try to do ‘everything’ —i.e. single binary, built-in parser and parser
‘language’, built-in commands for plotting. Example: MAD-8.

2. Suite of codes, with multiple binaries, and helper files for things like plotting, data analysis.
The suite is often joined together using a scripting language. Example: Elegant.

3. Aset of libraries that provide functions to a programmer, who then writes (and compiles) a
program to do a specific simulation. Example: MERLIN.

None of these 3 approaches is ‘right’ or ‘wrong’. | prefer approach 2 myself.

4>

The Cockeroft Institute
of Accelerator Science and Technology

Over the years there have been lots of optics codes written:

AT, BETA, BMAD, COMFORT, COSY-INFINITY, DIMAD, ELEGANT, LEGO, LIAR, LUCRETIA, MAD, MARYLIE,
MERLIN, ORBIT, PETROS, PLACET, PTC, RACETRACK, SAD, SIXTRACK, SYNCH, TEAPOT, TRACY, TRANSPORT,
TURTLE, UAL

Just like in a soap opera, there are relationships between the characters that you may not be aware of. There
is actually a family tree of codes, with a personality and a reason behind the writing of each.

Example: To sort out the mess of the MAD-8 code, the CLASSIC ‘universal’ library was proposed. It never
really succeeded as a collaboration, but several codes came out of it (MERLIN, ELEGANT etc.)

Moral: Many people have proposed ‘universal libraries’ that ‘do everything’. None of them have become
universal.

See e.g. http://www.slac.stanford.edu/xorg/icap98/focused.htm

4>

The Cockeroft Institute
of Accelerator Science and Technology

Single particle ray-tracing

. _ AP
Particle vector X = (x,x',y,y',z,é) , 0 =
Transport through elements P()

using R matrix)Z'f - RX.
1

Linear optics calculations
Concatenated by Matrix multiplication
Extended to higher order (e.g. in TRANSPORT)

ZR kx]z + ; klx]lxlz ;U]klm jlezx e

NOT symplectic (see next slide)

This approach used for high accuracy and model/reality calibration in systems with
small numbers of elements, e.g. for spectrometers.

AT, BETA, BMAD, COMFORT, ELEGANT, LIAR, LUCRETIA,
MAD, MERLIN, PETROS, PLACET, SAD,
TRANSPORT, TURTLE,

(from Winni Decking’s nice talk on codes)
°

4>

The Cockeroft Institute
of Accelerator Science and Technology

Symplecticity

Given a transfer Map Zf = MZZ
And its Jacobian ; aZc{
J (2')=—%

1
0z,

Jis symplectic if
T
J'SJ =8

e A Hamiltonian system is symplectic.

e Therefore a one-turn mapping which fulfills the symplectic conditions describes a
Hamiltonian system.

e The one-turn map does not exactly match the real system, but does retain the symplectic
condition.

e If violated, artificial damping/excitation of motion.

e These sorts of maps are important when looking a highly-periodic systems with slow
damping, e.g. tracking of circular accelerators over many turns (particularly protons).

e Thisis a big area.

4>

The Cockeroft Institute
of Accelerator Science and Technology

Kick codes for particle tracking

Elements described by thin lens kicks and drifts

Always symplectic
Long elements to be sliced -> slow
There are more sophisticated mathematical formalisms — see E.Forest for more details

BETA, BMAD, ELEGANT,
MAD, MERLIN, RACETRACK, SAD, SIXTRACK,
TEAPOT, UAL

A drift-kick-drift in a bending magnet.
Several kicks per element improve on the
level of approximation with the real
accelerator.

see e.g. the humorous review by E. Forest, “Geometric Acceleration for Particle Accelerators”,
J. Phys. A: Math. Gen. 39 (2006) 5321-5377 H >

The Cockeroft Institute
of Accelerator Science and Technology

Accelerator libraries

3. Aset of libraries that provide functions to a programmer, who then writes (and compiles) a
program to do a specific simulation. Example: MERLIN.

Provide the user with a toolbox (library) rather than an existing program which does contain
the needed elements and procedures

Realized in C++, F90, Pascal

BMAD, COSY-INFINITY, LEGO,
MERLIN, PTC,
TRACY, UAL

4>

The Cockeroft Institute
of Accelerator Science and Technology

Accelerator libraries

3. Aset of libraries that provide functions to a programmer, who then writes (and compiles) a
program to do a specific simulation. Example: MERLIN.

Some codes are written directly into mathematical software such as Matlab. A good example of
is AT (Accelerator Toolbox).

Advantages: Easy writing of code, and doing plotting. In the case of AT, there is a good link with
control system software via EPICs, which allows sophisticated machine control and
machine/simulation comparisons.

Disadvantage: Because Matlab is an interpreted (non-compiled) language, it is quite slow.

4>

The Cockeroft Institute
of Accelerator Science and Technology

Integrated codes

1. Monolithic codes that try to do ‘everything’ —i.e. single binary, built-in parser and parser
‘language’, built-in commands for plotting. Example: MAD-8.

2. Suite of codes, with multiple binaries, and helper files for things like plotting, data analysis.
The suite is often joined together using a scripting language. Example: Elegant.

A more or less advanced process control is implemented in the code itself and allows
complicated run logic

ELEGANT,
MAD, SAD,

4>

The Cockeroft Institute
of Accelerator Science and Technology

Input formats and XSIF

A common format for input and output does not exist
XSIF, which really means ‘XSIF-like’ format, is used by quite a few codes

Much more information on a beam line element needed
Errors, Aperture, Wakefields,
Magnet errors
Systematic
Random
Time dependent variation of magnet strength, magnet positions
Correlation between errors important
Girder motion
Correlated systematic errors

Quite a few XML-based formats have been proposed/formulated, but they haven’t caught on
yet. SDDS (as used by Elegant and ASTRA) is a simpler alternative for data files that is a

reasonable balance between flexibility and simplicity.

4>

The Cockeroft Institute
of Accelerator Science and Technology

A typical XSIF file as used in Elegant
Elegant .lte file (XSIF)

ICELLH-DI-01: CSBEND, L =0.700, ANGLE =
0.23562,E1=0.11781,E2=0.11781

CELLH-Q-01: QUAD, L=0.25,K1=-2.7017
CELLH-Q-02: QUAD, L=0.25,K1 = 5.0614

CELLH-DR-01: DRIF, L=0.3
CELLH-DR-02: DRIF, L=1.4
CELLH-DR-03: DRIF, L=0.3

str: LINE = (STR-DR-01,STR-Q-01, STR-
DR-02,STR-Q-02, STR-DR-03,&
STR-DI-01,STR-DR-04,STR-DI-02,STR-
DR-05,STR-DI-03,&
STR-DR-06,STR-DI-04,STR-M-01)
IHalf an arc cell

cellh: LINE = (CELLH-M-01,CELLH-DI-01,CELLH-
DR-01,CELLH-Q-01,CELLH-DR-02,&

Elegant .ele file (command file)

&run_setup
lattice = hacl-021007.1te
default_order=1
use_beamline = str
p_central_mev =550
magnets =str.mag
element_divisions =5

&end

&twiss_output
matched =0
statistics=1
IFrom linac
beta x = 20.7, beta_y = 50.0, alpha_x= 0.53,
alpha_y=-2.14
filename
&end

= str.twi

&matrix_output
full_matrix_only =1

SDDS output =str.matr
CELLH-Q-02,CELLH-DR-03) &end
°
These two pieces of information are combined into one file in MAD >

The Cockeroft Institute
of Accelerator Science and Technology

Curvilinear vs. Cartesian codes

There is (very) broadly speaking a division between codes that assume a geometry, and those
that simply integrate through a Cartesian coordinate system.

‘Curvilinear’ codes: (e.g. MAD, PTC, Elegant)
These are biased towards the following tasks:
*Optics calculations

*Particle tracking, particularly symplectic tracking
*Formal analysis of errors, e.g. orbit shifts from magnet misalignments

Important sub-group of ‘curvilinear’ codes are for space charge calculations:

*HOMDYN, ASTRA, PARMELA (the modules that assume cylindrical symmetry) — see e.g.
C.Limborg et al., Code comparison for simulations of photo-injectors’, proceedings of PAC 2003.

‘Cartesian’ codes: (e.g. GPT, GEANT/BDSIM, ray-tracing in OPERA)
These are biased towards the following tasks:

*Tracking of particle motion in exact fields

*Consideration of point-to-point effects

*Shower generation and tracking (e.g. FLUKA, GEANT-4)
[]

4>

The Cockeroft Institute
of Accelerator Science and Technology

Some ‘gotchas’

We've already seen the ballistic term which is included in some codes and not in others.
Here is a list of some things in your code that might cause a problem.

Single particle problems

*Relativistic approximation — not correct if particle velocity is not c.

*Changing from electrons to positrons may not be handled correctly.

*Changing from electrons to hadrons may not be handled correctly.

*Small angle approximation may be being used, and not valid for your simulation.
*Edge focusing — presence, polarity.

*Energy — can your code vary the mean energy of the particle?

Multi-particle problems
*Beam emittance ratio not valid for assumption of cylindrical symmetry (e.g. in ASTRA).
*Particle number/distribution incorrect for valid calculation of space charge, microbunching calculations.

*Binning — can cause all sorts of confusion. For example, comparison of peak current calculations in different simulations.
Binning is especially important in numerical wakefield calculations.

*Emittance calculations —is it sigma, 90%, 95%? How is it being calculated? How is the FWHM value being derived? (is it just
2.35 x the Gaussian value?).

*Distribution shape and edges — have you considered whether your model distribution introduces unphysical artefacts. A good
example of this is wakes induced by sharp edges in the generated bunch distribution; they aren’t there in reality!

Polarity/reference problems
*Conversion from t to v for non-relativistic particles.

*Does +t mean particle is ahead or behind the reference particle? This caused confusion for over a year on the TTF project. The
fix was to look at the actual distributions rather than the RMS values.

*How are things like phase and amplitude being translated from the input file to the actual calculation? For example, ASTRA/
PARMELA/Elegant comparison use different ideas for the reference particles.

4>

The Cockeroft Institute

of Accelerator Science and Technology

Example: ASTRA vs. PARMELA in the LCLS injector

Momentum [MeV/ic]

ASTRA GUN FIELD =120 MV/m

PARMELA
ASTRA

6.2+

6.15¢

6.1

6.05
-6

Momentum [MeVic]

6.05
-6

ASTRA GUN FIELD = 120.15 MV/m

PARMELA
ASTRA

4>

The Cockeroft Institute
of Accelerator Science and Technology

Momenmm [iev/c)

Example: ASTRA vs. PARMELA in the LCLS injector

150
1495 ..
'HEAD
1494 S SRR
[~ PARMELA }——+ +4.0 Deg
TAIL + ASTRA —| =-40Deg
+ ASTRA —|—» 2.5 Deg
1485 5 i i
10 -5 0 5
T [ps]

Long. Phase Space for 3 phases of .O1

MAX FIELD L02 =40.66 MV/m

10

Momenium |iviewvic|

Phase ASTRA [.01 at -2.5 Deg
MAX FIELD L02 =40.68 MV/m

150
1495
[~ PARMELA
|+ ASTRA
1495 o 4
TAIL
14830 5 0 5 10

T [ps]

Note the reversal of the polarity needed here

4>

The Cockeroft Institute
of Accelerator Science and Technology

Example: ASTRA vs. PARMELA in the LCLS injector

: T T 0.15 T T P "
- » [~ PARMELA : T R
0.05L i e o J
E OF i W " . R S J
) £
>%_0_05_ o |
________________________ OAF M M RS
PARMELA
.. -0.15 ASTRA .
'2_ I [:I 1 1 _02 1 1 1 i I
-2 -1 0 1 2 3 -2 -1 0 1 2 3
X [mm] X [mml]
5 r 2.5 T
—— PARMELA —— PARMELA
— —— ASTRA —— ASTRA
g 4|l 214
g ’\
E €
E £
><. 3 ;- 1.5
E 2 g 1
S T
o ¥
any "
0 0
0 2 4 6 8 10 0 2 4 6 8 10

Z[m] Z[m]

Agreement of transverse focusing is rather poor. Just looking at the Twiss °
functions derived from these data will be misleading. ¢>

The Cockeroft Institute

of Accelerator Science and Technology

There are many codes available for different purposes, and with different philosophies. Most
were written with a particular job or range of validity in mind, and most of those have been
used outside their range of validity. Even the authors won’t know all the bugs.

It is therefore worth considering comparisons and benchmarking of your simulations, to keep a
reality check.

Remember that most ‘integrated’ lattice codes, e.g Elegant, only handle certain phenomena in
a simplistic way, such as:

*RF focusing (this is often different in different codes)
*Wakefields

*Coherent radiation and associated aperture effects

*Magnet fields, including edge focusing

*Intrabeam effects such as scattering

and may completely ignore other important processes, such as:
*Space charge

*Beam loss and showers

*RF effects such as beam loading

Dedicated ‘process’ codes must be used to check these simplistic calculations for sensitive
regions of an accelerator.

4>

The Cockeroft Institute
of Accelerator Science and Technology

