LATTICE DESIGN CODES: LECTURE THREE: RANDOMNESS

Hywel Owen, University of Manchester/Cockcroft Institute
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Steps in Simulation

Physical . Computed
Phenomenon B — Algorithm — Solution
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Accuracy versus Precision

(a) Low accuracy (b) Low accuracy (¢) High accuracy (d) High accuracy
Low precision High precision Low precision High precision

The accuracy of a simulation is the degree of closeness of
estimates of a quantity to their actual (true) value.

The precision of a simulation, also called reproducibility or
repeatability, is the degree to which repeated simulations
under unchanged conditions show the same results.
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Determinants of Accuracy and Precision

Modelisation Error

Discretisation Error
Step Sizes

Quantization

Computing Error
(numerical precision)
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Monte Carlo Integration

Consider f(z) =xcosx + 4sinx

Regular (trapezium) integration (30pts) Monte Carlo integration (30 pts)
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In this particular case, we know analytically / f(g;) —xcosx+4sinzdr =0
0

For n=10"4 random points, we converge on ol
the correct integral, as we should. N
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g(x) = cos 30x (30 pts)
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Pathological behaviour can also occur with more complicated functions,

which you may encounter without realising, e.g. in particular shower
calculations
Generalisation is Monte Carlo method, where we evaluate some complex
function f(x) by repeated evaluation.
GEANT, FLUKA, MCNP/MCNPX, MAD, Elegant etc.
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Pick two random numbers between -1 and +1

Determine for each pair whether

7'2=:z:2+y2<R2

P(r)<R] = —

M~

So we need some way of generating the random numbers....
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Two things you should take away from this lecture

1. There is no such thing as a ‘random’ number generator.

2. Itis generally a bad idea to use the random number generator that
comes with your favourite compiler. Using the code in Numerical
Recipes is particularly bad.
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Buffon’s Needle: 1

Buffon was a noted naturalist who wrote a 36-
volume Natural History, and from his studies
observed that similar environments have
distinct species (Buffon’s Law) — posited that
there therefore must have been improvement
or degeneration of pre-existing species.

A precursor to Darwin, who credited Buffon in
the foreword to the Origin of Species.

Also a contributor to early probability theory.

The Buffon’s Needle method is named after
him.

Georges-Louis Leclerc, Comte de Buffon

(1707-1788) .
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Buffon’s Needle: 2

Buffon posed the following question:

Suppose we have a floor made of parallel
strips of wood, each the same width t, and we
drop a needle of length | onto the floor. What
is the probability that the needle will lie across
a line between two strips?

We generate (physically drop) many random
samples, and measure the answer.

Analytically, we can show that if t>/, then for n
needles dropped with h of the needles
crossing lines, the probability is:

h 2
n_ tr’
We can invert this equation to give:
_ 2In
= E

In other words, we can drop some needles
onto strip flooring, and from it get an estimate
for .
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Buffon’s Needle: 3

Mario Lazzirini did the experiment manually
in 1901, manually throwing the needle 3408
times. In his case he used

5
[ ==t
6
for which the probability the needle will cross

alineis

5

" 3

P

For n throws giving c crossings, we may
estimate m as

Lazzirini found h = 1808, giving
355
- 113

(this is actually a slightly suspicious result:
try to work out why)

s
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Monte Carlo simulation

Buffon’s Needle is an example of a Monte
Carlo approach:

To find an approximate solution to a problem,
we throw random samples at it and interpret
the result we obtain.

The name Monte Carlo was coined by
Stanislaw Ulam, who also incidentally with

Edward Teller tried to patent the design of the
hydrogen bomb. Stanislaw Ulam

(1909-1984)

Ulam used this approach (along with Enrico
Fermi) during the Manhattan Project, and
chose the name as his uncle used to borrow
money to go gambling at the Monte Carlo
casino.

The casino at Monte Carlo
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Problems with the Monte Carlo method

Of course, in order to perform a Monte Carlo
simulation, we need a reliable source of
random numbers.

If not, then our answer could be wrong.

For example, what if — when we throw our
needles — we unwittingly put in a bias such
that they more predominantly in line with our
strips?

If so, then we will systematically over-estimate
7.

In computer simulation, as well as physical
simulation, we need a reliable way of
generating random numbers.
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Some methods of generating random numbers

One way of generating random numbers is by
using some physical process that appears to
be truly random.

Francis Galton proposed using dice.

(By the way, Galton also drew the first
weather map, did the first scientific studies of
fingerprinting, and coined the terms eugenics,
and nature versus nurture.)

One simply throws a die many times, and gets
a uniformly-distributed random integer
between 1 and 6. Uniform means that each
number (1,2,3,4,5,6) has an equal probability
of being generated as a result.

Francis Galton
(1822-1911)
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Little balls

Top 20 balls - Number of times each ball has been drawn up to Sat 10/05/08
In the national lottery, they use 49 little balls 250
(80g weight each). 20

230
220
210
200
180
180
170
160

I
199 198 158 STRESRBAMBAMO4 153 10 , o 10 P

Humber of times drawn

Over all machines it is thought to be random,
but ball number 38 does come up most often.

38 25 31 43 11 6 23 44 47 12 30 33 45 9 48 22 40 10 28 42

Ball Humber

 Spread of ball counts grouped in to bins of 4 Also, the equivalent Normal
distribution is included as at draw number 1292 dated Sat 10/05/08

The Royal Statistical Society said ‘Ball number
38 should be physically examined’, after an
analysis by the University of Salford Centre

for the Study of Gambling.

Equivalent Normal Distribution

Apparently, the lottery people examine their
balls each draw anyway....

154- 158- 162- 166- 170- 174- 178- 182- 186- 190- 134- 198- 202- 206- 210- 214- 218- 222- 226- 230-
157 181 165 169 173 177 131 185 189 193 197 201 205 209 213 217 221 225 229 233

Number of times drawn . grouped into bins of 4

No. of different balls drawn bin range

/

4>

The Cockeroft Institute

of Accelerator Science and Technology




Other physical methods for generating random numbers

Other physical methods are possible, which are
more suited to use on computers —i.e. they
generate random numbers faster.

*Electrical shot noise

*Thermal noise

*Avalanche noise (e.g. from a Zener diode)
*Nuclear decay/Geiger counter
*Atmospheric noise

*Drift between two clocks on a microprocessor
(most hardware RNGs use this approach

However, they all suffer from the same two
problems:

1. They suffer from systematic bias (often
hidden or progressive)

2. They are non-repeatable, precisely because
they are random.

Example of systematic bias:

The dated bits of paper thrown into a bin used
for the Vietnam draft were biased towards

dates at the end of the year.
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Why do you want true random numbers anyway?

Actually, for most simulation purposes you don’t want true random numbers. What you want
are sequences which have no correlation with the process you are simulating.

This is a subtle concept, which we will come back to later.

To allow repeatability, which allows you to debug your simulation, and to repeat your great
result so you can show someone later, people usually use pseudo-random numbers.

‘The generation of random numbers is too important to be left to chance’ — Robert Coveyou,
Manhattan Project, and one of the pioneers of pseudo-random number generation.

TOUR OF ACCOUNTING

NINE NINE egtEJ THAT'S THE
OVER HERE NINE NINE SURE PROBLEM
WE HAVE OUR NINE NINE THAT'S WITH RAN-
RANDOM NUMBER DOMNESS

YOU CAN
NEVER BE
SURE.

GENERATOR.

www.dilbert.com ecottadams@aol.com

10|as(o) ® 2001 United Feature Syndicate, Inc,

Copyright 3@ 2881 United Feature Syndicate, Inc.
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Pseudo-random numbers

A pseudo-random number generator (PRNG)
produces a sequence of numbers that exhibits
statistical randomness. The output sequence is
unbiased, i.e. the statistical measures are what
you would expect from a random variable.

However, the sequence is entirely deterministic.
Given any number in the sequence, you can
generate the next number. Therefore, you can
repeat the entire sequence given a starting
number. This number is known as the seed.

The quintessential example of the PRNG is the
Linear Congruential Generator (LCG), invented by
Lehmer:

Xnt1 = (aX,, +¢) mod m
which has the following parameters: Derrick H. Lehmer
(1904-1991)
The modulus: 0<m
The multiplier: 0 <a<m
Theincrement: 0 <c<m
The seed: 0<Xp<m
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Features of the LCG

An LCG sequence repeats over a full period m The LCG formula
as long as:
c and m are relatively prime Xnt1=(aX, +¢) mod m
a-1 is divisible by all prime factors of m 0<m
a-1 is a multiple of 4 is m is a multiple of 4 O<a<m
D<ec<m
0<Xyp<m

With these parameters, we can draw a
random number from 0 to 1 of precision m
using the formula:

Sp = —
m
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It seemed like a good idea at the time...

The RANDU algorithm is a particularly bad
implementation:

Vit = (65539V;) mod 2
(it was chosen because it runs fast)

But actually, all LCGs produce points that lie
on hyperplanes (Marsaglias’ theorem) — there
are correlations between the points. Looking
at these planes is known as the spectral test.

But LCGs are still widely used...

Compiler m a

Numerical Recipes e 1664525 1013904223

ANSI/IBM C 232 1103515245 12345

Microsoft VC++ 232 214013 2531011

Xnt1 = (aX, +¢) mod m
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Do the correlations matter?

The answer is yes.... and no. It all comes down to the spatial periodicity of the random number
sequence.

The answer is definitely yes if the spatial periodicity correlates with a physical process of

interest. 210F _
g 75F
Example: Microbunching gain R E 5
PRSTAB 7, 074401 (2004) >6 g 28 i
4}%0:........Al.‘...“...‘.. .Z
. 2o [um]
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SDL Zero-Phasing Experiment — the effect could be real

(W. Graves et al.)

RF zero-phase L4 phase = -90, L3 phase = +90, L2 phase varies, L1 phase = 0,
time profi|e amplitude varies  amplitude varies amplitude amplitude
(adds known (removes chirp constant constant
chirp) from L2)

Chi ies f
65 MoV N o o Arpr o A
Energy  \_ L
spectrometer LT e
e T [ I —
14 1.3 1.2 1.1

X (E) profile E E E E

A y N A

-l — —> >
/\ 7 Z Z Z Z
o
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Real particles vs. macroparticles

Simulations of microbunching rely on using
macroparticles rather than actual particles.

—_
o

~
wn

The reason is typical bunches contain
N ~ 10° particles, too many for a code.

N
a

o .

Aym2 per 1% initial bunching
(&)}

If the particles are non-interacting then LCGs
are usually ok — only the statistical measures
are important.

2500 ™ T e T T 0.0125%
_ _ _ »oool ““ | I | | 0.025%
However, if the physical process of interest . ,“1 A | i 5.050%
. . e el < | I ) I\‘
cares about spatial periodicities, then we ~1s00f || 1 ‘\[ | " 10.100%
= n! ‘ N ‘
have to be careful.... S0l M A L LA | 0-200%
= N\ A /\ VA 0.500%
U WY N N N\
© sool 7 §/ 1\\?/,( I\ BN _/ .
O f

-0.02 -0.01 0.00 0.01 0.02
t (ps)

FIG. 8. (Color) Final longitudinal density for FERMI for 30 um
initial modulations of various amplitudes, showing only the
central 100 bins.

M. Borland, “Modeling of the microbunching
instability" Phys. Rev. S.T.A.B. 11, 030701 (2008) °
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But how do we create non-uniform distributions anyway?

Xnt1 = (aX,, +¢) mod m
LCGs produce a sequence of numbers which

is uniformly distributed. Yniform Distribution

107

e,

. S e
P

But how do we produce numbers which don’t 3T

have a uniform distribution? B R

: T S AT s
For example, a modulated Gaussian such as 04} ot T T T
for the microbunching calculations from the ool S R e
previous simulation? ..:.;.-::.:-‘. s SN

Modulated Gaussian 0 200 400 600 800 1000

0.4+ 1 ) j. L
Uniform Distribution

20t 1| [H [H .

N[R]

0.0t . . , : ] 10t

0.0 0.2 04 0.6 0.8 1.0
(the modulations here are bigger than in a real simulation) R[/]
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The Box-Muller transformation
Zy = Rcos(©) = /=2 In U cos(27Us)
The Box-Muller method is handy way of

generating Gaussians using two uniformly- 7 — Rsin(©) — /—2 In U sin(2al
distributed numbers. ! (©) =y 1 sin(27Us)

The result is a normal distribution with unit Pair Pair
mean and standard deviation. Uy, Us S 71,7
Other means and s.d.’s can be generated
simply: X; =0Z;+ Box-Muller only works for Gaussians, but is
handy because the formulae can be re-cast
Box -Muller Gaussian for very fast computation.
80 i 1 (Polar method and Marsaglia’s Polar Method)
60}
N - L
= 40¢
s
otm oAl )
-3 -2 -1 0 1 2 3
Zq

Box, G. E. P. and Muller, M. E. "A Note on the Generation of Random Normal Deviates." Ann. Math. Stat. 29, 610-611 (1958)
[ ]
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Inverse distribution sampling/cumulative distribution sampling

The inverse distribution method is quite simple — integrate the probability density function
of the distribution you want to sample from, and then invert it to form the inverse
cumulative distribution function. Multiply a uniformly-distributed variable by the inverse

CDF to get a distribution distributed according to your original PDF.
3
2
1
0
1

0.4 1.0
0.3 08
— =0.6 =
=) Iy ‘
T 0.2 5 L‘S
G 04 o -
0.1 02 -2
-3

0.0 0.0
4 _2 0 2 4 -4 _2 0 2 4 0.0 0.2 04 0.6 0.8 1.0

cdf ~H(z) = v2erf (22 — 1)
1 T, TR . 1277, 43697 , 348077
V7 (‘Hﬁ"’ 180" T 10320° T 53060800 ' 182476800 )

Inverse CDF Gaussian Distribution

80| T Works just great for a Gaussian (again....)

60¢ M -

NIR]

40}

20¢ — L

3 =2 -1 o 1 2 3
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Inverse distribution sampling of the exponential distribution

Sampling functions is straightforward, provided the inverse CDF can be found.

1.0 1.0

35
0.8 0.8 3.0
_25
— >
=00 0.6 =20
oy & o
0.4 O 04 318
1.0
0.2 0.2 05
0.0
0'00 1 2 3 4 0'00 7 5 3 7 0.0 0.2 0.4 0.6 0.8 1.0

X X

pdf(x) = e™* cdf(z) = /x pdf(z) =1—¢e7" cdfH(z) = —In(1 — 2)

Inverse CDF Exponential Distribution
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John von Neumann

John von Neumann was a pioneering
mathematician. He also patented a design for
an atomic bomb (with Klaus Fuchs), and
proposed Kyoto as the target for ‘Fat Man’.
Ironically, he died of cancer probably caused
by watching the atomic tests at Bikini Atoll.

He also invented the field of cellular
automata, which are used for cryptography
and pseudo-random number generation.

Here, we look at his elegant method for
generating a sample drawn from an arbitrary
distribution, the rejection method.

Janos Lajos Neumann/John von Neumann
(1903-1957)
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von Neumann rejection method

The rejection method is actually very simple to
understand. P(x)

. . A
We draw a uniform variate sample Z;

from a uniform distribution with bounds
corresponding to the range of values we wish
to draw samples from the PDF, U(a,b) Y;

A
We then calculate the PDF value for this Z; f(x;) /M \/ \

and compare this value with another uniform /
variate ¥; drawn from U(0, 1)

z)

AN
b Tl

a X
If f(zj) < Yj then keep Zj

A very elegant method, that is only limited by
having to have limits a and b (for
The resulting set {x;} is distributed according computational efficiency reasons)

to the PDF f(x) In regions where there the PDF is close to
zero, a large proportion of samples are
rejected. This can be fixed by rescaling f ()
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The Modulated Gaussian (yet again)

P(x)

A Modulated Gaussian

0.5 I

a T b | ~2 0 2 4
X, R[J]

The implementation works....

but remember that the underlying pseudorandom samples can still be correlated if they are
drawn using an LCG algorithm.
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Complicated distributions are straightforward

215 ~10 -05 00 06 10 156
X [mm)]

A cathode emission with a hole in it. Easy with the von Neumann method.

4>

The Cockeroft Institute

of Accelerator Science and Technology




Replacements for the LCG method

| hope I’ve convinced you that using LCGs is usually flawed. There are better alternative
methods, but of course you should be careful with those too.

I’ll just mention two popular ones.

Marsaglia-Zaman (Multiply With Carry):

n>r

i |

Alp—r + Cﬂ—lJ
)

r, = (arp_, +Cch_y)modbd, ¢, = { ;

Mersenne Twister (Matsumoto & Nishimura):
(algorithm is hard to write down, but is an n-dimensional shift register with extra bits).

Generally, the more complicated the random number generator, the more samples you need
to pass tests of randomness.

To get round problems with generating numbers, you can get them on a CD!

For more information, please look at publications by Marsaglia, and at
http://www.stat.fsu.edu/pub/diehard/
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Metropolis-Hasting Markov Chain Monte Carlo

A final method you might see.

Based on the idea of Markov chains, in which
each element in a sequence is only
dependent on the previous element — a
random walk.

W. Hastings extended Nick Metropolis’
method, which takes a random walk
dependent on the PDF — it removes the limits
on the distribution that the von Neumann
method has.

Andrey Andreyevich Markov
(1856-1922)

Despite the Russian Revolution, nothing
particularly interesting happened to Dr.
Markov

[ ]
W.K. Hastings, Biometrika 57, 97-109 (1970) — one of only three papers he published in his career. >
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Metropolis-Hasting Markov Chain Monte Carlo: one implementation

z; Very general, but quite inefficient, especially
with a poor starting point; generally, the initial
points are left out while the algorithm ‘finds’
the middle of the distribution.

Our modulated Gaussian (again!):
o =x; +kU(-1/2,1/2)

Modulated Gaussian

P[CB’] > P[CBJ] or U[O, 1] <

Y N

/ . — 7.
Tj4+1 =T LTjt1 = Ty

Note that we don’t need to draw our step X, R[]
from a uniform distribution. We can draw it
from any symmetric distribution.
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Clumpiness

Actually, pseudorandom numbers are actually not so good for some things.

A pseudorandom macroparticle distribution will exhibit more ‘clumpiness’ than the real
distribution.

Apart from increasing the macroparticle number and looking for convergence in the simulation
results (a brute force method), we can think of other ways of making samples than
pseudorandom ones, that have:

1. The correct statistical properties (they match the real population)
2. They lack correlations that influence the simulation
3. They are more uniform — they are low-discrepancy sequences

Low-discrepancy sequences are termed quasi-random. Simulations based on quasi-random are
called quasi-Monte Carlo methods.

A formula for discrepancy is complicated, but does exist.
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The van der Corput sequence

In 1935 Johannes van der Corput asked himself how to progressively fill a unit interval with a

sequence of numbers. This is the van der Corput sequence, an example of a low-discrepancy
sequence.

Easy to write down. This one is in base 2:

1131537 1 9 5 13 3 11 7 15

2'4°478’8'8’8716' 16167 16" 16’ 16" 16" 16"
The formula is a bit tricky, but is based on using binary digits. Base 3,4,5.... are also possible.

Base 2 - e

0.0 0.2 04 0.6 0.8 1.0

Base 3 — e e

0.0 0.2 04 0.6 0.8 1.0
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Halton Sequences

A Halton sequence is just a series of points in
n dimensions, where each coordinate is a van
der Corput sequence.

As you can see, the radices for each axis must
be relatively prime, otherwise there will be
correlations.

Once you have that, you have a nice, uniform
distribution, although of course it still has a
strong spatial frequency determined by the
radices.

Again, you need to be careful, depending on
the application. Halton is good for space
charge, but can be bad for microbunching.

Why should you care about the Halton
sequence?

Because it is used in pretty much every quiet
start routine (e.g. Elegant), used for space
charge, FEL modelling etc.

vl

i

i

1.0F T

0.6F
0_4_..':.:‘“;,:‘ T R
0.2 e

O_O_I.'.'-." .- .

Halton Sequence, Radices=2,3
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Back to microbunching again

Similarly to the banding that you can have

T T T T T T T

. . . 3103} . _ ]

with the LCG, poor choices of the radices can o T ‘
give rise to banding, depending on the 2x10-3 | L 1
particle number. o3t U ]
£ of _

A very important point is that if you populate a '

e.g. a 6D distribution with samples, you 1107y |
should not do it pairwise in each plane: x4 03k : |
/ / . . o . .
{2, 5} {5,951 3 2 0 1 2 3

t s
otherwise there will be correlations between (ps)

e.g. Ij and Y; . Instead, you should FIG. 2. Illustration of banding in longitudinal phase space

. . Y when Halton radices of 11 and 13 are used for time and
construct a joint sequence of {xj’ L Yj yJ} momentum coordinates, respectively. Banding becomes less

evident as the number of particles is increased and when the
. ratio of the radices is far from unity.
The moral of the tale is to look at the
distributions you are generating.

M. Borland, “Modeling of the microbunching
instability" Phys. Rev. S.T.A.B. 11, 030701 (2008)
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Other quasirandom sequences

There are lots:
*Hammersley
*Faure
*Neiderreiter
*Sobol

*Scrambled van der Corput/Halton

I’'ve created a Mathematica notebook that you can play with to get an idea of how they all

work.

Cathode with Hole, Pseudorandom

y [mm]

215 10 -05 00 05 10 15
X [mm]

y [mm]

Cathode with Hole, Quasirandom Halton

215 10 -05 00 05 10 15
X [mm)]
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Random numbers are a big field in themselves, with many issues unresolved.
Depending on the simulation you are doing, different types of distribution may be needed.

The LCGs in most compilers have a number of deficiencies that are important in accelerator
simulations.

More generally, you should be aware of the issues in using distributions, both pseudorandom
and quasirandom.
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