LATTICE DESIGN CODES: LECTURE TWO: MATCHING AND OPTIMISATION

Hywel Owen, Cockcroft Institute/ASTeC
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What is Design?

Define Design is the process of creating something to
fit a purpose - from toothbrushes to
accelerators.

-~

Research

A design is judged to be good by quantifying

& __ how good it is compared to other designs.

The space of possible designs is termed the
Configuration Space. The ‘goodness’ of the
design is termed the Objective Function.
Optimisation is the improving of a design. This
means either maximising or minimising the
Objective Function F.

There is a strong link between optimisation,
linear/nonlinear programming, and more
‘mundane’ activities like curve fitting; they are
mathematically similar.
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Configuration space: a simple example!

Question:

What is the largest volume that can be
enclosed by a given surface area of
cardboard?

Motivation:

We would like to minimise the amount
of cardboard used!

Of course, in this simple example we know the
answer:

r=y=nh

A cardboard box V = 23
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Configuration Space: Varying the independent parameters

For any dimensions we have

A = 2(zy + xh + yh)
V =uaxyh

Eliminating dependent variable h we have

_ xy(A—2xy)
V=G0

Here, V is the Objective Function
Example: A = 3
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Objective function over configuration space
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Method of Steepest Descent (Cauchy)

Requires that the local gradient of the objective function F can be calculated in some way
Choose point P,
Move from P, to P,,, by minimising along the direction —\/ F’

(a)

(b)
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Optimising the box problem numerically (Cauchy/gradient method)

Gradient
: N
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When the method of steepest has problems: Rosenbrock’s function

Rosenbrock’s function defines a curved The method of steepest descent can take
narrow valley with a shallow-sloped bottom: many steps....

f(z,y) = (1 —2)* + 100(y — 2°)”

Gradient
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Variations of ‘Hill-Climbing’ Strategies

There are variations on a theme, but they all _Conjugate Gradient
share the same features:

o

1. Have to choose an initial start point
2. Need to calculate derivative—VF

Calculating a derivative can be done with
‘functions, but what about general codes? -1
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General Structure of an Optimisation Routine (in a Lattice Code)

Optimisation Routine

Configuration ]
: [

Lattice Code

Calculation
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Example — MAD Matching Module

Objective Function is called Penalty Function, which is minimised. Weighting is accomplished
by multiplying the constraint by the weight in the penalty function calculation.

Three methods used - LMDIF, MIGRAD, and SIMPLEX. MIGRAD and LMDIF calculate numerical
derivatives of either the penalty function as a whole or of each of the individual constraints.
SIMPLEX uses the Simplex algorithm.

12.6 Matching Examples

12.6.1 Simple Periodic Beam Line

Match a simple cell with given phase advances:

QF: QUADRUPOLE, . ..

QD QUADRUPOLE, . ..

CELL1: LINE=(...,QF,....QD,...)
UsSk,CELLL
CELL

VARY ,NAME=QD [K1] ,STEP=0.01

VARY ,NAME=QF [(K1] ,STEP=0.01
CUNSTRALNT ,PLACE=#E ,MUX=0,25,MUY=1/6
MIGRAD,CALLS=2000

ENDMATCH
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The Downhill Simplex Method (Nelder & Mead, 1965)

A way of getting round the derivative problem — use multiple starting points.

Simplex - geometrical figure in n dimensions, with n+1 vertices.
Triangle in 2 dimensions, tetrahedron in 3 dimensions...

Choose starting point P,, and create simplex by adding each of the unit vectors e, for each
vertex.

Evaluate F for each vertex. Choose new simplex.
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The Downhill Simplex Method (Nelder & Mead, 1965)

. o contraction
Simplex at beginning of step

high

low

_ multiple contraction
reflection .
P4
/\\\ E reflection and expansion
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Downbhill Simplex on Rosenbrock’s Function

Downhill Simplex

Downhill Simplex
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Hill-Climbing

All of the previous methods are Hill-Climbing strategies. Once you’'re on the top of the nearest
hill, you can’t get any higher.

How do you find the highest point?

X] X2

(hint: this is also an example of a greedy strategy)
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Multiple Minima Systems — Example: Sloped Double-Gaussian
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The end point depends on the start point
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Random Search

Choose points randomly in the configuration space. Unintelligent, and rarely used by itself.
Can be combined by doing single-point optimisation of each random point.
Useful for comparing with other methods to see if they’re working!

Of course, with enough points you will eventually find the optimum — but just imagine how
many points you need with many dimensions of configuration space.

Random/Gradient Random/Gradient
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Stochastic Hill Climbing

Instead of just climbing up the nearest hill and you can also make random steps, retaining the
move if the fithess is improved.

Easy to implement and fast, but is ‘noisy’ if there are many small peaks.

Fimess

'y global optiraura

/ local optirawm

L

staring point
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Simulated Annealing (Metropolis, 1953)

Analogy with thermodynamics - a liquid cooled slowly forms a large crystal where the atoms
are nearly at their minimum (optimum) energy state.

Key to optimisation process is slow cooling, where there is time for movement to the lowest
energy state - this is annealing.

The previous methods correspond to quenching.
Boltzmann distribution gives probability of system being in a state of energy E,
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Simulated Annealing (Metropolis, 1953): Implementation

The algorithm uses the following elements:
1. A generator of random changes in the configuration.
2. An objective function E (analog of energy) to minimise.
3. A control parameter T (analog of temperature) and an annealing schedule.
High T gives high P of moving to a worse state - explores configuration space.
Low T gives settling to final optimum.
Infinitely slow cooling guarantees finding the global minimum.

Simulated Annealing Simulated Annealing

s
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Multiple minima functions

In real life (i.e. accelerators), your system will
be very ‘messy’, with multiple minima.
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Genetic Algorithms (Holland, 1975)

Concept is Population of points in configuration space. Each point P is represented by a Gene - a
binary representation which can be decoded to give the Phenotype - the position in
configuration space/particular design.

The Population is allowed to Evolve through interaction between the individuals. Eventually the
population will Converge to a fitter region of the configuration space.

N

Evaluation Reproduction

Mutation (/
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Genetic Algorithms - Reproduction

Reproduction proceeds through crossover:

2-point
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Genetic Algorithms - Mutation

Mutations are characterised by a Mutation Rate.

(LTI TIT I ]— [T ITTTTT]

T

Mutation Point
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Genetic Algorithms — Selection and Convergence

Selection can proceed in various ways:

1. Only the best children are kept (no
parents kept).

2. Parents and children are ranked
together, and only the best are kept.

3. Each child is compared to the parent
most like it (using the Hamming
Distance), which it replaces if it is
better - This method is called
Niching.

The method of selection is important as it is
obviously non-stochastic. Selection gives
pressure toward fitter regions of
configuration space.

The selection procedure and the mutation
rate are important for determining how fast
the population converges to a particular
region of configuration space.

The convergence rate determines how much
‘variety’ is tried.

Strong analogy with Simulated Annealing
technique, and with damping and excitation
in phase space.

Selection is analogous to damping, mutation
is analogous to noisy excitation.
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Genetic Algorithms (GAs) and Evolutionary Programs (EPs)

There are a HUGE number of
implementations of GAs and EPs. However,
what you need to know is:

Genetic Algorithms quantise each variable:

n = 2°
There is a formal proof that GAs work

Evolutionary Programs allow a variety of
continuous variables.

There is no formal proof that they work, but
they are used a lot because they provide
good optimisation.
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Fig, 6. Coil crosssection for the 6 block (38 vurns) design (V6-3)

LHC dipole optimisation

(Russenshuck, 1998)
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Evolutionary Program with population size of 10
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GAs vs. Single-Point methods

Genetic algorithms have distinct advantages
over classical single-point optimisation

techniques for particular classes of problems:

1. Best area of configuration space is
not known

2. Many peaks/discontinuous Objective
Function

3. Best solution not required - ‘good
enough’ needed

Hybrid solutions are popular, combining
several methods.

No particular algorithm is best in the general
case.

Wolpert and Macready (1995)

The ‘No free lunch theorem’

Important general theorem of search
algorithms:

‘All algorithms that search for an
extremum of a cost function
perform exactly the same, when
averaged over all possible cost
functions.’

In other words, if algorithm A outperforms
algorithm B for some cost functions, then
there must exist as many functions where B
outperforms A.

The corollary to this is that the algorithm
must be matched to the particular objective
function to perform well.
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Weights and Constraints: Practical Issues

| Optimisation Routine

-F
Configuration . I

C

Lattice Code
Calculation

Variables give you a region of configuration space to work in
e.g. limits on quad strengths
Constraints are your target values
e.g. beta functions, tunes, chromaticity
The Objective Function F is the combination of Constraints and Weights
Tolerance is when to stop — when the change in F is less than the Tolerance
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Over-constrained and Under-constrained optimisation problems

An Over-Constrained problem is one where Constraints > Variables

Typical symptoms:
Objective function target cannot be achieved
Two or more variables go to their limits (but watch out for your variable range)

An Under-Constrained problem is one where Constraints < Variables

Typical symptoms:

Objective function target is achieved easily, but some features of the system take on wild
values (crazy beta functions are very common)

A single variable (e.g. a quad strength) seems to oscillate wildly without any particular
benefit, especially between runs — a sign that it is not coupled to the constraints

Note: sometimes it can be difficult to spot whether a system is over- or under-constrained, as
some constraints are implicitly coupled:

Example - tunes vs. beta functions, which are dependent on each other
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Tips for setting constraints and variables — an aperiodic system

Constraint Constraint Constraint
Set1l Set 2 Set3

Variable
Setl

Variable
Set 2

Variable
Set 3

Module 1

_

Module 2 i/ Module 3\
—

Stages:
1. Constraint Set 1 with Variable Set 1
2. Constraint Set 2 with Variable Set 1 & 2

3. Constraint Set 3 with Variable Set 1,2,3

But you should be flexible. This is an art not a science!
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Tips for constraints and weights

Constraints can contribute to the objective function in a number of ways — this will depend on
the code you use (or write).

A typical routine will have targets with the following pseudo-code:

betax=20,weight=1;
betay=10,weight=1;
etax=0,weight=5;

— (. — )2
Typical formulation with weights: F= Z wi (i — )

But you also see routines with the following code:

F = Z —Z2 Inverse barrier
betax<20,weight=1; r (x; —ci)

betay<10,weight=1;

F; = —w;elog[(z; — ¢;)(cy — x;)] Logarithmic barrier
etax=0,weight=5;
0.5
0.4
§03 Logarithmic barrier
€ 02 plot
0.1
°
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Things | didn’t mention

There are a number of other techniques in 18l 5
optimisation that you may encounter or use. 16l 1 22 %
. | %\
For example: ral ‘i \
8 12} '. \X \ N\
Pareto-front/Multi-objective optimisation: E 1 g"a NN 0e.

This looks at the trade-offs of one variable §x 0.8 l'.,l % 0 % e T
with respect to another on the overall Y oosl | \ 07
. . . L 06

optimisation of a system. 0.4l '.l \\"3"" s
Example application: what is the trade-off 0al oo, R B
between bunch length and emittance . s — 2 e )
obtainable for different bunch charges. 6. (mm)

z

Figure 3: Transverse normalized rms emittance vs. bunch

Also other optimisation methods, such as ) ) -
length for various charges in the injector (nC).

particle swarm optimisation which is quite
fashionable at the moment.

(Bazarov, PAC 2005)
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