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Lecture One — Linear Optics and Matrices Lecture Two — Matching

Recap — Numerical Methods Design and optimisation

From equations to matrices Configuration space and objective functions
Periodic systems Hill-climbing methods

Standard optical modules Multiple minima systems

Aperiodic systems Weights and constraints

Real lattices

Lecture Three - Randomness Lecture Four — Everything Else

Random numbers don’t exist! A bestiary of codes
Why distributions are important to get right The structure of an accelerator code
How to do it ‘Gotchas’ — things to watch out for

Monte-Carlo and other things Various things that codes do

There is (probably) not going to be a one-to-
one mapping of lectures into slots
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Learning material for this course

Course Material

Cl Courses (
http://www.cockcroft.ac.uk/pages/
education.htm)

Linear Dynamics (Wolski)
Accelerator Physics(Appleby)
Linear Optics and Lattice Design (Holzer)

CAS (http://www.cern.ch/CAS)

And many more....
(available from all good booksellers!)

Where to get codes

Accelerator Code Repository:
http://projects.astec.ac.uk/Plone/Codes

MAD — Methodical Accelerator Design
http://mad.web.cern.ch/mad/
Elegant

http://www.aps.anl.gov/
Accelerator Systems Division/
Operations Analysis/software.shtml

And many more....
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LATTICE DESIGN CODES: LECTURE ONE: NUMERICS & MATRICES
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Recap of Numerical Methods

A numerical method is an algorithm that allows you to solve a problem numerically. Nowadays
this is done on a computer

usually using some iterative procedure.
Examples:
Solving systems of equations
Finding roots of equations (esp. non-linear)
Solving ordinary differential equations/partial differential equations (Project 2)
Analysis of data (curve fitting, spectral analysis) (Project 1)
Monte-Carlo simulation of physical systems

During numerical analysis, we must be aware that our predictions may be different from real
system, e.g. to what accuracy can we believe them?

Round-off error
Range error
Truncation error
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The representation of numbers on computers

Normally, computers store individual floating-point numbers in either
Single precision (4 bytes/32 bits)
Double precision (8 bytes/64 bits)/binary64 — e.g. default in MATLAB
If you definea = 0.02;then a will be in double-precision format
A floating-point number is represented by a significand and exponent

Significand (incorrectly) previously called mantissa

mantissa still used very widely 1 6 X 1 O — ].9

/ 7 "\

Sign (O or 1) Significand Base Exponent

bq
/ & mx / \ Exponent

Number

Slgn/ﬁcand Base (2 in double-precision)

(binary number in double-precision) .
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Accuracy of stored values

Accuracy is determined by the number of bits in the significand:

Double-precision accuracy is about 16 decimal places é - 2% ~1x 1016
Single precision accuracy is about 7 decimal places l _ L ~1x10"7
bl o 223 T
Round-off errors can be very significant:
‘Subtraction of similar numbers’ problem
—20
10 This immediately gives
(34 10—20) — 3) catastrophic round-off error
*
Cannot be represented with 16 sd

Try it! >>107(-20)/((3+107(-20))-3) gives Inf (inifinity) instead of 1

Matlab has variable eps that gives lower bound on accuracy

eps = 2.2204e-16
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Round-off error

Example: Round-off error when calculating derivatives

h) —
fi(x) = flat i)z /(@) h—0 Example: f(x) = 2°
2 2
h)— (x+h)*—=x
Ah) = |f/(w) - FEH5 = A(h) =22 — ———
/ \ 10° 3
Exact Derivative Approximation 1”"% ° o -
10'2:- o -
An optimum value of h is often around 10*“;. °° o
he~10"8 A(h) o ° :
h 10“: E
But, it depends on the problem! ] © :
100 o _
10-7 B o O 0 o ]
10°L - Lo .
10% 10" 10" 10° 10°
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Range Error

Range errors occur when you use a number outside of the exponent range

Smallest representable number: 22—<lq—1>
Largest representable number: 2—2(‘q‘1)
: . (Lo —1)
Single precision: lq — 8 92 ~ 10%38
lg—1
Double precision: lg =11 2i2( Y ~ 10*308
Exceeding the single precision range limit is not difficult in physics
47T€()h2 —
a0:—2::5.2><10 11m T
mee€ well within single precision limit

But, we would (without thinking) calculate the numerator and denominator separately in
code: _
Amegh® ~ 1.24 x 1078

mee? ~ 2.34 x 1078 oops!

Solution: use unit scale appropriate to the problem!
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Truncation Error

Suppose we need to find the first derivative f'(z) = ’1111% flz + h]')l, — f(z)

We have seen that h cannot be chosen too small because of round-off error

Therefore f'(x) = flzt h})b mEAC) Rp—

Can we find an expression for the error?
Consider the Taylor expansion f(z + h) = f( )+ hf'(z) + = h2f”( ) +

(equivalently) f(z + h) = f(z) + hf'(z) + h2f”(§) where z < ¢ <z +h

h) — 1
Therefore [f'(z) ~ fle t ,)L i) _ ~hf"(x)

1
ihf”(:zr) ~ O(h) is called the (local) truncation error
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Numerical Integration

Now we are in a position to perform numerical integration

We will consider a universal equation of motion, and look at the simplest method we can
imagine. This will turn out to be Euler’s Method

Before we do that, let’s picture what we are doing:

f(z) =2
fl@+h) = f(z)+hf ()

After n steps, we have effectively
calculated the definite integral

nh
/ 2xdx f ,(33 ) =2z
0
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Euler’s Method

E = a,(a:, t) a = ’U(t) (2 equations, not 1!)

Using the definition of numerical derivatives, we can write

v(t+ h) —v(t))
h

z(t+ h) — z(t))
h

Multiplying through,
v(t + h) = v(t) + h-a(z(t),v(t)) + O(h?)
z(t+h) = z(t) + h-z(t) + O(h?)

Re-writing in iterative notation,

+0O(h) = a(xz(t), v(t))

(forward derivatives)

+ O(h) = v(t)

Un+1:vn+h'a'n

That looks quite easy to calculate! Euler’s Method.
Ln+1 =Zn+h-vy,

Choose h and some initial conditions, and off you go!
[ ]
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Improved Euler’s Method

An easy way to improve on Euler’s method is to use one extra termin
the Taylor expansion for the derivative:

Un—i—lz'vn‘l'h'an

Tnt1 = Ty +h-vp + h; an  error ~ O(h%)
(cf.) z(t+dt) = z(t) + ' (t)dt + =" (t) (d;)2 + ...
Verlet’s Method
e s iy = TEER_TEZR) ey
T3 =0 =Y Fey ft+h)+ fg;— h)—2f() 112 W20 ()

re-arranging the 2"d of these gives

Tni1 = 2Tp — Tp_1 + h2. an + O(h4) Note: quarticin h!

Wow! This should be much more accurate!
But notice that (n+1) term requires n and (n-1) terms — not self-starting.
Must use Euler method for first step. 4°:>
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Example: Spring-Mass with Damping

General SHM with damping Euler An = ———Un — —Tn
m m

Untl =Un+ h-an
mi = —bt — kx + F(t)

b k F(t)

a(t) = —E’U(t) — Em(t) + W
b k

Imp. Euler Qv = — — Uy — —
b k F(t) om "t om™"
T T ™ Uni1 = vn b an
Ln+1 =Zn+h- vy, + §h2'an
Solvable if:
F(t) = 0 Verlet Tnt1=A Tp+ B ZTn_1

(and for certain functions)

(2m — kh?) B_ (bh — 2m)
D - D
D =2m + bh

A=2

The Cockeroft Institute
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Exact solution for F(t)=0:

(Refer to your notes from PHYS 10302)

: b /
mi + bi +kx =0 hassolution z(t) = AeW"2)t  where v = — & wo = k
m m

v Vb2
72
Critical damping is defined as w = 0, therefore wp = Z andso b= 2Vkm

1
Substituting into equation for quality factor gives Q = 5

ber = 2VEMm b= %bcr Q=
Q
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Analytic versus numerical simulation

Q=27.1109; w=0.553189

T

hob b b S e s N w & o

1 1 L 1 L 1 I L 1 L 1 1 L I L 1

0 5 10 15
t/s

Analytical solution

The important point here is to test your algorithm in
the case where the solution is analytically known:
then you know how good it is.

hob b b S e s N w & o

I I - T I R
i

o

I I I - T I

h=1s

h = 0.5s

h =0.2s

h =0.1s
0

4>

The Cockeroft Institute
of Accelerator Science and Technology



Integration over long times

h=0.1s

1 1
0 >0 100 150 200

Artificial addition of energy to system — numerical artefact.

Integrators are non-symplectic, one of them badly so! .
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Getting it wrong with no damping

L B 4 1
0 >0 100 15 200

Question: How would you check the green one was really constant amplitude?
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Energy Errors in Euler’s Method

Ignoring for simplicity an initial velocity, we may write an expression for the damped SHM motion

z(t) = Aebt/2m cos(\/(— - W )t)

The energy is just

E(t) = %m? () + %mvz(t)
Substituting and expanding out, we get (eventually)
2_,—bt/m M2 _ h2
Blt) = 2 (ke 412 cos(‘/4km O 4 b Them — b2 sin(‘/4km b))
8m m m
[ ]
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Euler’s Method With No Damping

Start by writing out expression for Euler step

Tptl = Tp+ hvy,
kh
Un+1 = Un — Exn
Then substitute into expression for energy
1 1 1 1
E = —kz? + —mv? + —h2k*z? + Zh2kv?
T M T T om nt g Mn
and collect terms to give
k
Eni1=E,(14+ —h?
m

In other words, our simulation predicts a steadily increasing energy!
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The Euler-Cromer Method

Let’s make a slight change to Euler’s method

In+l = $n+hvn+1

Un+1 = Un — Tn,
: . . m,
Expanding out the expression for energy again, we obtain (eventually)

1 o, k*z2 0 kv, kT2
Eny = Bn = gh" (0% —kvy) =W — = W

The second term averages out over one oscillation. The result is that the overall energy is
conserved.

But... there are oscillations about this average, compared to the true value of the energy. Better
than Euler though!

Euler-Cromer is a Symplectic Integrator, i.e. it is energy-preserving
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x(t)

A=1,k=10,b=0.1,m=1

-1

Time Plot

v /ms

n n 1 n 1 n

X /m

Phase Space Plot
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SHM in Linear Optical Systems

Normal quadrupole

— bt
r — bQT’o’

SHM through a long quadrupole

i)

Physical analogies

Pendulum
(small angles only!)

Spring-mass

< >
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Weak Focusing

Consider a constant energy particle in
a fixed dipole field (into the page) Off-axis particle

Reference particle executes cyclotron s
Reference particle
Other particles of the same energy \

motion

execute cyclotron motion of same

radius

Compared to reference trajectory, this geometric focusing

looks like an oscillation

Number of oscillations per turn (the
‘tune’) is 1.

" =
OGO &
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Stability in a combined function magnet

(TP
%
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The 6 coordinates and the linear drift space

[ ) (1 L 00 0 0O )
- 01000 O
) y 001LO O
=1, R=100010 0
. 0000 1 £,
53576
\ 9 ) \0o o000 1 |
xlzR.xo
/7/
X
o
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L — q bo
1 = ——
Poro

|
Normalised field gradient
(this is the number used in nearly all codes)
Doesn’t depend on energy
Normal quadrupole
— Y _ T
[ coswL  Sinwl 0 0 0 0 )
—wSsinwl coswlL 0 0 O O
o sinhwl —
0 0 wsinhwL coshwL O O
0 0 0 0 1 L
P70
0 0 0 0 0 1 )
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_. sinwl
( _ioj:i’ I ool 8 8 8 8 ) Physical analogies
0 0  coshwL SMeL g g
0 0 wsinhwlL coshwL O O !
O 0 0 0 1 g(z)%g i Pendulum
\ 0 0 0 0 o 1 ) ' (small angles only!)
) Spring-mass
1 X 1
A particle executes simple harmonic : i
motion in an infinitely long quadrupole J\N\/\_

Transversely, an accelerator is analogous to a

pendulum where gravity changes as a JM/\_

function of time
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The Sector Bend — assumption of a curved coordinate system

start =
.source "

AANARA
GRS RY

SHUHIN
WHNNUR
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The Linear Wedge Dipole

[ coswL sihel 0 0 0 1_5%50WL \
~wsinwL coswL 0 0 O sifel
P 0 0 1 L O 0
- 0 0 01 0 0
__SinwlL _1—coswL 0O 0 1 L  wL-sinwL
5o w0 B85 w33
\ 0 0 0 00 1 )

FARAAN
RERE G
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The Linear Wedge Dipole — now with focusing!

/ COSw, L sinw,L 0 0 0 gz (1—cosw.L) \
—wySiNw, L. COSw,L 0 0 0 | S—°S"jb—WL
R 0 0 coshw,L Ik g 0
0 0 wySinhwy, L. coshw,L O 0
_kesinw,L ko (1—COSw.L) 0 0 1 L _ K (wL-sinwl)
Bo wa Bo w? Bve B8 wi
\ 0 0 0 0 0 1 )
= k& + k = /k
W 0 1 Wy 1
Y x
0 o L
b -
ko = ibl, k= 4972
Py Pyro \
Tl — R.ZBO
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The FODO Lattice — The Simplest Strong-Focusing Lattice

H

L—0 le—>—
f

/1 0 0 00 0) (1 L
~1/f 1 0 000 0 1
_ 0O 0 1 000 0 0
0O 0 0 010 0 0

\ 0 0 0 00 1) L0 0

R=Rq(2fo) - Rp(L) - Ry (—fo) - BRp(L) - Rg (2fo)

1-35 f(L+2f0) 0 0
ap(L—2f0) 1-45 o 0
R = 0 0 l_QLsz _%(L_Qfl))
0 0 —4*’;03(L+2f0) 1—;;02
0 0 0 0
\ 0 0 0 0

o O OO0

o O O O O

O OrMH~NOOoO

o O O o

v
SR

=)

O = O00O0

O O O O

3

O

O

P, [107]

0.5

-0.5

HHHH —

(th|n lens appromma‘uon)

<o

0.5

AV
p, 1107
o
T,
o

-05

E

-0.5 0 0.5 1 -1 -0.5 Q 0.5 1
x [mm] y [mm]

(hint: this is a Poincare gect‘ion)
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From rays to Twiss values

[ 1oap w420 © 0 O 0 \ | It can be shown that: RT.S.-R=S
L L2 s
i=(L-2f0)  1-4n 0 0 0 0
0 0 1 L —Lp—2f) o o
R = 2f; fa 2
0 0 k@421 1-L o0 o0 /[ 01 0 0 0 0)
0 0 "0 o 1 Z -1 0 0 0 0 O
\ 0 0 0 0 o 1 ) g_| 000100
- 0 0 -10 0 O
w.l.0.g. we can write: Ro = 15COS jux + So - Ao sin 0O 0 0 0 0 1
g 2 = 12 COS g + 52 - A2 SIN iz \0000—10
. A Yr COx
with: Ay = ( o Gy )
which gives: ,,:Bm—ag =1 and R-zr'Az'Rz:Az
So what?

Well, this means that the values of alpha, beta, gamma are constants of the accelerator
lattice, and not of any particular particle

Beta in particular describes the envelope of the particles
Alpha, beta, gamma are the Twiss functions (functions of ‘s’).
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Propagation of the Twiss Values

1

!
2

35

=

o

6 7

O C/;/7 ——_—

2]
=)
-1

4 3 _Windows NT 4.0 version 8.23dl

010806 10.57.05

00 [0F] 04
&pc =0
Table name = TWISS

J6

a8

10

2

T4

16

IS

5 (m)

A51(s1) = Ra(s0,51) - A5 (s0) - RY (50, 51)

e 4520 =( 5 1)

T = 2 33.3JT CcOos Og;
Pz = (sm dr + v COS )
1

is a conserved quantity

s2 1
/_\.émzf ® 2 ds
51 33’

Vy =—

JANS 1 o1
=—/ = ds
27T 27
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The Periodic Solution

( COS [ty + vy SIN i B SiN iz )
RQ == '

) . This is always the form of the 1-turn
—Yx Slﬂ,ug; COS,U,Q; — (X Slﬂp,g;

matrix

Ry = ’ 215 .2 This is the particular form
4_3(L —210) 1 — o for our FODO example
fo /o

For a real-valued phase advance (and therefore real-valued Twiss functions), the Trace of the
transfer matrix must be less than 2.

Don’t forget the other plane of motion — you can be stable in one plane and not in the
other...

In other words, you have to get the focusing strengths right.
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So how do we do it in a code?

Accelerator codes simply assume a piecewise-continuous representation of the accelerator
structure.

elength
eStrength
/ (B,E. etC.)

elength
eStrength

elLength
eStrength

Rr =R, . R,_1...R3.R2. Ry

but because of edge focusing the number of matrices is not the same as the number of
elements.

drift

foc quad
drift
bending
dipole
drift
combined
fct magnet
drift

Iy

|
X

)
¢

wn

<i:
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Calculation of the Twiss values — periodic solution procedure

Linear optics codes work using the following procedure:

Parse lattice structure into R matrices

Calculate one-turn matrix:  Rr = R, .R,—1..R3.R2. Ry
Determine stability in each plane using Tr(Rs) < 2
R, — COS jiy 4+ iy SIN Loy B SiN pig
2= — vz SiN pug COS f1 — vz SIN pug

4. Calculate the periodic phase advance: p = arccos[(Ri1 + Ra2)/2)]

Ry _ Ry1 — Ry

5. Calculate the initial Twiss values: G0 = W Qg = 2sin(1)

(Exercise: what happens when 3, comes out negative?)

6. Propagate the Twiss values.

Yo =

1+ o

Bo
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Propagating Twiss and phase values

This is easy...

T=A;!= _ﬁa _70‘

T>» = Ry1.T1.RL,

and phases are propagated as

Ry9
B1R11 — a1 Ryo

o = arctan

the important thing to note here is that elements can be split...
(but the edge focusing is not split over dipoles)

¢ (don’t have to split for the one-turn matrix)
I /2 :

(hint: you can put other calculations in when you do this) e cockoott instiure

11, pa



Continuous versus discrete calculations

Most accelerator physics courses talk about continuous functions.
Of course, virtually all codes calculate discrete values using the linear matrix formalism.
Depending on the code and/or the particular lattice, you can have problems. Most of these

problems arise because of the oscillatory form of the trajectory solutions.
Example: Betatron tune through a long quadrupole

% ds
Continuously, we have V(8) = —_
o B(s)

but in a discrete quadrupole the matrix calculation loses the integer part of the phase advance.

coswl ~ Sinwl 0 0O 0 0
—wsinwL coswl 0 0 0 0
0 0  coshwL SMel g g /
R= o o weinhwl coshwl o % SN N N A N S, VY S A AN _7.-._
0 0 0 0 1 5
0 0 0 o 0 1

Few codes check for this!
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Dispersion

Dispersion is actually much easier than it sounds.

The dispersion function is that ray which has unit

momentum deviation, i.e. A — 1
p/p Ne )

/
In other words, at any location through a lattice it can be e

described as a vector of the form: = N
D = Yy

= 77,
Assuming a linear system, all other energies just scale from Y
this value. 0

central design orbit
(closed orbit for p=po)

. closed orbit
golgsgg g:b'* (b) for p<po
=0(s) 2P
XD O‘S) Po
. closed orbit for p>p,
%“;spegp‘fb't central design orbit

=closed orbit for p=p, ><t,(s).-.D(sJ--i,§°2

The Cockeroft Institute
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Propagating dispersion

Propagating dispersion is even easier...
Dy = Ro1.D,
(remember, the dispersion is just another ray/particle)

For a periodic system with one-turn 6x6 matrix R, it can be shown (!) that the periodic solution

is:
/ (1-—Ra22)Ri6+R12 Ros \
(1-R11)(1—Ra2)—Rao1 R12
(1-R11)Ros+Ra21 Ris
(1—R11)(1—R22)—R21 R12
. (1-R4a)R36+ R34 Ras
Dy = (1-=R33)(1—=R44)— R4z R34
(1-—R33)Ras+Ra3 R3e
(1—R33)(1—R44)—R43 R34

\ ? /
_L

-- L / 2 The Cockcroﬂ Institute

again, we can split elements when propagating...

D,



Optical modules

There are many possible configurations of dipoles and quadrupoles that can give
stable motion

In particular, we can talk about dispersion-free lattices, which are important in
many applications

Colliders, SR sources
Chasman-green, double-bend achromat, triple-bend achromat...

Nearly always, someone has worked out the rules for a typical optical module that
does a particular job.

It then needs adapting to your particular problem, e.g. taking account of space,
beam energy, technological limitations/choices etc.

In the following slides we will see a few examples of such modules.

4>
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A non-dispersive bending system — the achromat

Example of nendispersive bending system

& = sector magnet bend, angle . :

9 = 2/k = quadrupole magnet phase angle

A = drift space length / /J/ \

The system is nondispersive if the
cosinelike trajectory (with respect d__/
to the central symmetry point) goes L
through the mid-point of the bending
magnets, i.e. if

AN

1]
%ctn%-ptan%+ X, x R A N
e
Fig; 14: Nondispersive deflecting system..
°
(from K. Steffen’s excellent CAS lectures) ¢>

The Cockeroft Institute
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A non-dispersive translating system — the dog-leg

Example of nondispersive translating system

® = sector magnet bend, angle ’“\\ ////“\ <
9 = 2/k = quadrupole magnet phase N /////// \. \\\\\\\\\\

angle

d,A = drift space lengths,

N /| N

4 /N N\

The system is nondispersive if the “’/4 ° ~
=

|
|

sinelike trajectory (with respect to
the central symmetry point) goes
through the mid-point of the bending
magnets, i.e, if

ptanL’L + A= ?1. dvK'cosg+ 2 sing .
2 k d/E‘Sin(p-Zcos¢

Focusing also in the other plane may
be obtained by adding a third quadru-
pole of opposite polarity at the sym-
metry point,

Fig. 15: Nondispersive translating system,

¢
The'gockcroﬂ Institute
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A non-dispersive bending system using only dipoles

Example of nondispersive sector magnet system

¢ = sector magnet bending angle

%-- sector magnet bending strength

A = drift space length,

The system is nondispersive for

2C_050;_!_ = ctng - tani .

Al
P sing 2

N/

N/

\
=Y

(5

Fig., 17: Nondispersive sector magnet system;

4>
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A non-dispersive 4-magnet system — the chicane

Example of nondispersive rectangular magnet system

§
M~ .. | M~
o ,I i N G ¢

Fig; 18: Nondispersive momentum selecting system for large momentum spread.

Q: Why would you want one of these? .
Exercise: derive the analytic value in such a system for Rz 4>
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An isochronous, achromatic bending system

Example of symmetric isochronous deflecting system

O\

Fig., 19: Symmetric isochronous deflecting system,
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Periodic and aperiodic systems

There is no basic difference between a periodic and an aperiodic system.
The propagation of individual rays is identical, T2 — R.£E1

In an aperiodic system, initial Twiss and dispersion values must be supplied. The values
obtained when propagated will then differ depending upon the initial values.

Example: a FODO channel is set up which has a particular periodic solution for the Twiss values.
We propagate an initial (different) Twiss matrlx through the system — the propagated values

are different. This is called mismatch. 4 I ‘ | ‘ | ‘ | ‘ |

Exercise: Try it out for yourself!

The same thing is true of dispersion.
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Deliberate dispersion mismatch — the dispersion suppressor

tx = 45.0538
wy = 45.0436

Bar By, 10+, [m]

E
B
s [n]
e = 45.0538

#y = 45.0436

¥ [m]

Bar By, 109, [m]
AN
o

s [m]

A FODO lattice with 45-degree phase advance ¢>
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Real lattices and lattice design

Remember that when we design lattices, that eventually it will get built (hopefully!)

Reality uses up more space than ideal elements....

| .
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’i% = e e ek []] i
= =4 ;i=—--.':_".iq G—h =5 1t '%'15: = ;g:-' _ )/
| J'—' P |y 50— i Wit = X =
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Fig. 1: Lattice sections as seen by the lattice designer (top) and the design engineer (bottom). Note how the space
between ideal magnets is consumed by coils, beam-position monitors, absorbers, pumps, efc.
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From simple to complex lattices
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a: Weak focusing

b: FODO channel

c: FODO cell

d: Low-emittance cell

e: CF low-emittance cell

f: Low-emittance FODO

g: Dispersion match

h: Periodic dispersion match
i: Double-bend achromat

j: Triple-bend achromat

(see A.Streun’s excellent
course on low-emittance
lattice design)
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In the next lecture

In the next lecture, we will talk about taking an optical module, and adapting (i.e. improving) it
for a particular purpose. This is often one of the principal jobs people use codes for.

The general method is called matching.
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